Skip to main content

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 76))

  • 150 Accesses

Abstract

The increasing acceptance of BiCMOS as a viable technology has brought to the forefront new challenges for the device physicist/designer. Ultimately, the device designer wishes to optimize the performance of the transistors while simultaneously maintaining process simplicity. The challenge to achieve this in the BiCMOS environment is heightened because the process requirements for the MOSFET and bipolar transistors often conflict with one another. Most of the compromises involved are determined in the design of the front-end of the process. However, since the MOSFET and BJT characteristics are strongly coupled, optimization of both devices can only occur at the expense of increased process complexity and the associated manufacturing cost. A thorough device design approach, coupled with the application of a statistically-based device design methodology, becomes critical for evaluating both performance tradeoffs and manufacturability implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Alvarez, “BiCMOS Technology,” 1987 IEDM Short Course on BiCMOS Technol., Dec. 1987.

    Google Scholar 

  2. A. G. Sabnis and J. T. Clemens, “Characterization of the Electron µ in the Inverted 100 Si Surface,” 1979 IEDM Tech. Dig., pp. 18–21, Dec. 1979.

    Google Scholar 

  3. Y. P. Tsividis, Operation and Modeling of the MOS Transistor, Mc Graw-Hill, New York, 1987.

    Google Scholar 

  4. R. R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering,” IEEE J. Solid-State Circuits, Vol. SC-14, No. 4, pp. 383–391, April 1979.

    Article  Google Scholar 

  5. C. Hu, S. C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, K. W. Terrill, “Hot-Electron-Induced MOSFET Degradation–Model, Monitor, and Improvement,” IEEE J. Solid-State Circuits, Vol. SC-20, No. 1, pp. 295–305, Feb. 1985.

    Google Scholar 

  6. J. R. Brews, “Physics of the MOS Transistor,” in Applied Solid-State Science, Academic Press, New York, 1981.

    Google Scholar 

  7. K. M. Cham, S.-Y. Chiang, “Device Design for the Submicrometer P-Channel FET with N+ Polysilicon Gate,” IEEE Trans. Electron Devices, Vol. ED-31, No. 7, pp. 964–968, July 1984.

    Article  Google Scholar 

  8. G. J. Hu and R. H. Bruce, “Design Tradeoffs between Surface and Buried-Channel FETs,” IEEE Trans. Electron Devices, Vol. ED-32, No. 3, pp. 584–588, March 1985.

    Article  Google Scholar 

  9. S. J. Hillenius and W. T. Lynch, “Gate Material Work Function Considerations for 0.5 Micron CMOS,” Proceedings, IEEE Int’l Conf. on Computer Design–VLSI in Computers, pp. 147–150, Oct. 1985.

    Google Scholar 

  10. G. Sh. Gildenblat and S. S. Cohen, “Criteria for Estimating the Impact of Series Resistance on MOSFET Performance,” Solid-State Electronics, Vol. 31, No. 2, pp. 261–263, Feb. 1988.

    Article  Google Scholar 

  11. R. Haken, R. Chapman, T. Holloway, C.-F. Wan, D. Bell, B. Gale, and T. Tang, ‘Transistor Source/Drain LDD Design Issues and Tradeoffs for Submicron CMOS,“ Proceedings, IEEE Intl Conf. on Computer Design–VLSI in Computers, pp. 151–154, Oct. 1985.

    Google Scholar 

  12. F.-C. Hsu and S. Tam, “Relationship between MOSFET Degradation and Hot-Electron-Induced Interface-State Generation,” IEEE Electron Device Lett, Vol. EDL-5, No. 2, pp. 50–52, Feb. 1984.

    Article  Google Scholar 

  13. M. Kìnugawa, M. Kakumu, S. Yokogawa, K. Hashimoto, “Submicron MLDD NMOSFETs for 5V Operation,” 1985 Dig. of Technical Papers, Symposium on VLSI Technology, pp. 116–117, May 1985.

    Google Scholar 

  14. J. Y. Chen and A. G. Lewis, “Parasitic Transistor Effects in CMOS VLSI,” IEEE Cir. and Devices Mag., Vol. 4, No. 3, pp. 8–13, May 1988.

    Article  Google Scholar 

  15. A. R. Alvarez, J. Teplik, D. W. Schucker, T. Hulseweh, H. B. Liang, M. Dydyk, I. Rahim, “Second Generation Bi-CMOS Gate Array Technology,” 1987 IEEE Bipolar Circuits and Technol. Meeting, pp. 113–117, Sept. 1987.

    Google Scholar 

  16. D. K. Ferry, L. A. Akers, E. W. Greeneich, Ultra Large Scale Integrated Microelectronics, Prentice Hall, Englewood Cliffs, N. J., 1988.

    Google Scholar 

  17. N. Hanaoka and A. Anzai, “Perspective of Scaled Bipolar Devices,” 1981 IEDM Tech. Dig., pp. 512–515, Dec. 1981.

    Google Scholar 

  18. R. M. Warner and B. L. Grung, Transistors, Fundamentals for the Integrated-Circuit Engineer, John Wiley and Sons, New York, 1983.

    Google Scholar 

  19. D. D. Tang, P. M. Solomon, T. H. Ning, R. D. Isaac, R. E. Burger, “1.251.tm Deep-Groove-Isolated Self-Aligned Bipolar Circuits,” IEEE J. Solid-State Circuits, Vol. SC-17, No. 5, pp. 925–931, Oct. 1982.

    Article  Google Scholar 

  20. H. C. De Graaff, J. G. De Groot, “The SIS Tunnel Emitter: a Theory for Emitters with Thin Interface Layers,” IEEE Trans. Electron Devices, Vol. ED-26, No. 11, pp. 1771–1776, Nov. 1979.

    Article  Google Scholar 

  21. T. K. Ning, R. D. Isaac, “Effect of Emitter Contact on Current Gain of Silicon Bipolar Devices,” IEEE Trans. Electron Devices, Vol. ED-27, No. 11, pp. 2051–2055, Nov. 1980.

    Article  Google Scholar 

  22. P. Ashburn and B. Soerowirdjo, “Comparison of Experimental and Theoretical Results on Polysilicon Emitter Bipolar Transistors,” IEEE Trans. Electron Devices, Vol. ED-31, No. 7, pp. 853–860, July 1984.

    Article  Google Scholar 

  23. E.-F. Chor, A. Brunnschweiler, P. Ashburn, “A Propagation-Delay Expression and its Application to the Optimization of Polysilicon Emitter ECL Processes,” IEEE J. Solid-State Circuits, Vol. SC-23, No. 1, pp. 251–259, Feb. 1988.

    Article  Google Scholar 

  24. E. W. Greeneich and K. L. McLaughlin, “Analysis and Characterization of BiCMOS for High-Speed Digital Logic,” IEEE J. Solid-State Circuits, Vol. SC-23, No. 2, pp. 558–565, April 1988.

    Article  Google Scholar 

  25. B. Landau, B. Bastard, D. Haueisen, R. Lahri, S. Joshi, J. Small, “Poly Emitter Bipolar Transistor Optimization for an Advanced BiCMOS Technology,” IEEE 1988 Bipolar Circuits and Technology Meeting, pp. 117–120, Sept. 1988.

    Google Scholar 

  26. D. Burnett and C. Hu, “Hot-Carrier Effects in Polysilicon Emitter Bipolar Transistors,” IEEE 1988 Bipolar Circuits and Technology Meeting, pp. 95–98, Sept. 1988.

    Google Scholar 

  27. S. P. Joshi, R. Labri, and C. Lage, “Poly Emitter Bipolar Hot Carrier Effects in an Advanced BiCMOS Technology,” 1987 IEDM Tech. Dig., pp. 182–185, Dec. 1987.

    Google Scholar 

  28. T. Ikeda, A. Watanabe, Y. Nishio, I. Masuda, N. Tamba, M. Odaka, K. Ogiue, “High-Speed BiCMOS Technology with a Buried-Layer Twin Well Structure,” IEEE Trans. Electron Devices, Vol. ED-34, No. 6, pp. 1304–1310, June 1987.

    Article  Google Scholar 

  29. D. D. Tang, K. P. Mac Williams, P. M. Solomon, “Effects of Collector Epitaxial Layer on the Switching Speed of High-Performance Bipolar Transistors,” IEEE Electron Device Lett., Vol. EDL-4, No. 1, pp. 17–19, Jan. 1983.

    Article  Google Scholar 

  30. D. D. Tang, T.-C. Chen, C.-T. Chuang, G. P. Li, J. Stork, M. B. Ketchen, E. Hackbarth, T. H. Ning, “Design Considerations of High-Performance Narrow-Emitter Bipolar Transistors,” IEEE Electron Device Lett., Vol. EDL-8, No. 4, pp. 174–175, April 1987.

    Article  Google Scholar 

  31. D. P. Verret and J. E. Brighton, “Two-Dimensional Effects in the Bipolar Polysilicon Self-Aligned Transistor,” IEEE Trans. Electron Devices, Vol. ED-34, No., pp. 2297–2303, Nov. 1987.

    Google Scholar 

  32. P.-F. Lu, G. P. Li, D. D. Tang, “Lateral Encroachment of Extrinsic-Base Dopant in Submicrometer Bipolar Transistors,” IEEE Electron Device Lett., Vol. EDL-8, No. 10, pp. 496–498, Oct. 1987.

    Google Scholar 

  33. P. M. Solomon and D. D. Tang, “Bipolar Circuit Scaling, ” 1979 IEEE Intl Solid-State Circuits Conf., pp. 86–87, Feb. 1979.

    Google Scholar 

  34. A. R. Alvarez, B. L. Abdi, D. L. Young, H. D. Weed, J. Teplik, and E. R. Herald, “Application of Statistical Design and Response Surface Methods to Computer-Aided VLSI Device Design,” IEEE Trans. Computer-Aided Design, Vol. CAD-7, No. 2, pp. 272–288, Feb. 1988.

    Article  Google Scholar 

  35. A. R. Alvarez, D. W. Schucker, “Bi-CMOS Technology for Semi-Custom Integrated Circuits,” IEEE Custom Integrated Circuits Conference, pp. 22.1.1–22. 1. 5, 1988.

    Google Scholar 

  36. A. R. Alvarez, J. Teplik, H. B. Liang, T. Hulseweh, D. W. Schucker, K. L. Mc Laughlin, K. A. Hansen, B. Smith, “VLSI BiCMOS Technology and Applications,” 1987 Int’l Symposium on VLSI Technology, Systems, and Applications, pp. 314–319, March 1987.

    Google Scholar 

  37. A. R. Alvarez, J. Arreola, S. Y. Pal, and K. N. Ratnakumar, “A Methodology for Worse-Case Design of BiCMOS Integrated Circuits, ” 1988 IEEE Bipolar Circuits and Technology Meeting, pp. 172–175, Sept. 1988.

    Google Scholar 

  38. R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassons, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, Vol. SC-9, No. 5, pp. 256–268, Oct. 1974.

    Article  Google Scholar 

  39. P. K. Chatterjee, W. R. Hunter, T. C. Holloway, Y. T. Lim, “The Impact of Scaling Laws on the Choice of N-Channel or P-Channel for MOS VLSI,” IEEE Electron Device Lett., Vol. EDL-1, No. 10, pp. 220–223, Oct. 1980.

    Google Scholar 

  40. G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and its Application to a 1/4 Micrometer MOSFET Design,” IEEE Trans. Electron Devices, Vol. ED-31, No. 8, pp. 452–462, April 1984.

    Article  Google Scholar 

  41. D. D. Tang, P. M. Solomon, “Bipolar Transistor Design for Optimized Power-Delay Logic Circuits,” IEEE J. Solid State Circuits, Vol. SC-14, No. 4, pp. 679–684, Aug. 1979.

    Article  Google Scholar 

  42. T. H. Ning, D. D. Tang, and P. M. Solomon, “Scaling Properties of Bipolar Devices,” 1980 IEDM Tech. Dig., pp. 61–64, Dec. 1980.

    Google Scholar 

  43. J. S. Huang, “Bipolar Technology Potential for VLSI,” VLSI Design, Vol. 4, pp. 64–66, July 1983.

    Google Scholar 

  44. H. Momose, K. M. Cham, C. I. Drowley, H. R. Grinolds, H. S. Fu, “0.5 Micron BiCMOS Technology,” 1987 IEDM Tech. Dig., pp. 838–840, Dec. 1987.

    Google Scholar 

  45. ] D. L. Young, J. Teplik, H. D. Weed, N. Tracht, A. R. Alvarez, “Application of Statistical Design and Response Surface Methods to Computer-Aided VLSI Device Design II: Desirability Functions and Taguchi Methods,” submitted to IEEE Trans. Computer-Aided Design.

    Google Scholar 

  46. A.R. Alvarez, P. Meller, D. Schucker, F. Omerod, J. Teplik, B. Tien, D. Maracas, ‘Technology Considerations in Bi-CMOS Integrated Circuits,“ Proceedings, IEEE Intl Conf. on Computer Design–VLSI in Computers, pp. 159–163, Oct. 1985.

    Google Scholar 

  47. S. K. Ghandi, Semiconductor Power Devices, Wiley, New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teplik, J. (1990). Device Design. In: Alvarez, A.R. (eds) BiCMOS Technology and Applications. The Springer International Series in Engineering and Computer Science, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2029-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2029-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2031-0

  • Online ISBN: 978-1-4757-2029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics