Skip to main content

From Egg Surveys to Ecosystem Models: Biological Assumptions in Fisheries Management

  • Conference paper
Fishery Science and Management

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 28))

  • 65 Accesses

Abstract

Tbe biological assumptions associated witb fishery management are discussed within tbe framework of three problems of increasing complexity. The first is the use of egg or larval surveys to estimate spawning biom ass and the associated questions about modelling aggregation. The second is management of krill in the Antarctic and the relationship between catch per unit effort and stock abundance. Tbe importance of behavioral models in fishery management is discussed. The third topic is the management of multiple pelagic species in California coastal waters and the need for the development of community ecology models for the California Current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AITCHISON, J. 1955. On the distribution of a positive random variable having a discrete probability mass at the origin. American Statistical Association Journal, 901–908.

    Google Scholar 

  • ARTHVR, D.K. 1976. Food and feeding of larvae of three fishes occurring in the California current, Sardinops sagax, Engraulis mordax, and Trachurus symmetricus. Fish. Bull. V.S. 74, 517–529.

    Google Scholar 

  • ARTHVR, D.K. 1977. Distribution, size, and abundance of micro–copepods in the California current system and their possible influence on survival of marine teleost fishes. Fish. Bull. V.S. 75, 601–611.

    Google Scholar 

  • BANNEROT, S.P. and C.B. AVSTIN. 1983. Using frequency distributions of catch per unit effort to measure fish–stock abundance. Trans. Amer. Fish. Soc. 112, 608–617.

    Google Scholar 

  • BARDACH, J.E., JJ. MAGNUSON, R.C. MAY, and J.M. REINHART. 1980. Fish Behavior and its Use in the Capture and Culture of Fishes. IClARM, Manila, Philippines.

    Google Scholar 

  • BARFIELD, C.S. and R.J. O’NEIL. 1984. Is an ecologica1 understanding a prerequisite for pest management Florida Entomologist 67, 42–49.

    Google Scholar 

  • BISSELL, A.F. 1972. A negative binomial model with varying element sizes Biometrika 59,435–441.

    Google Scholar 

  • BLISS, C.I. and A.R.G. OWEN. 1958. Negative binomial distributions with a common k. Biometrika 45,37–58.

    Google Scholar 

  • BUTTERWORTH, D.S. 1986. Antarctic marine ecosystem management. Polar Record 23,37–47.

    Google Scholar 

  • CASSIE, R.M. 1962. Frequency distribution models in the ecology of plankton and other organisms. J. An. Ecol. 31, 65–92.

    Google Scholar 

  • CHELTON, D.B., PA. BERNAL, and JA. McGOWAN. 1982. Large–scale interannual physical and biological interaction in the California current. J. Mar. Res 40, 1095–1125.

    Google Scholar 

  • CHELTON, D.B., R.L. BERNSTEIN, A. BRATKOVICH, and P.M. KOSRO. 1987. The Central California coastal circulation study. Eos, 1–12.

    Google Scholar 

  • CLARK, C.W. and M. MANGEL. 1979. Aggregation and fishery dynamics: a theoretica1 study of schooling and the purse seine tuna fisheries. Fish. Bull. 77, 317–337.

    Google Scholar 

  • CLVTTER, R.I. 1969. The microdistribution and social behavior of some pelagic mysid shrimps. J. exp. mare Biol. Ecol. 3, 125–155.

    Google Scholar 

  • COOKE, J.G. 1985a. On the relationship between catch per unit effort and whale abundance. preprint.

    Google Scholar 

  • COOKE, J.G. 1985b. The relationship between catch rates and abundance in fisheries, preprint.

    Google Scholar 

  • COOKE, J.G. and J.R. BEDDINGTON. 1984. The relationship between catch rates and abundance in fisheries. lMA J. Math. Appl. Med. & Biol. 1, 391–405.

    Google Scholar 

  • CUSHING, D.H. 1982. Climate and Fisheries. Academic Press, New York.

    Google Scholar 

  • DeBOUZIE, D. and THIOULOUSE. 1986. Statistics to find spatial and temporal structures in populations. In Pest Control: Operations and Systems Analysis in Fruit Fly Management (M. Mangel et al., editors), Springer Verlag, New York, P. 263–282.

    Google Scholar 

  • DELINCE, J. 1986. Robust density estimation through distance measurements. Ecology 67, 1576 1581.

    Google Scholar 

  • DENNIS, B. and G.P. PATIL. 1984. The gamma distribution and weighted multimodel gamma distributions as models of population abundance. Math. Biosci. 68, 187–212.

    Google Scholar 

  • DIAMOND, J. and r.r. CASE. 1986. Community Ecology. Harper and Row, NewYork.

    Google Scholar 

  • DIGGLE, P. 1983. Statistical Analysis of Spatial Point PatternsAcademic Press, New York.

    Google Scholar 

  • DUPONT, W.D. 1983. A stochastic catch–effort method for estimating animal abundance. Biometries 39, 1021–1033.

    Google Scholar 

  • ETIERSHANK, G. 1984. A new approach to the assessment of longevity in the antarctic krill Euphausia superba. J. Crustacean Biol. 4, 295–305.

    Google Scholar 

  • FOX, W.W. 1974. An overview of production modeling. Int. Comm. Consv. At. Tunas. ceu Val. Sei. Pap. 3, 142–156.

    Google Scholar 

  • FRYE, R. 1983. Climatic change and fisheries management. Natural Resources J. 23

    Google Scholar 

  • GERRITSEN, J. and J.R. STRICKLER 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Bd. Can. 34, 73–82.

    Google Scholar 

  • GETZ, W.M., G.L. SWARTZMAN, and R.C. FRANCIS. 1985. A conceptual model for multispecies, multifleet fisheries. In Resource Management (M. Mangel, ed.), Springer Verlag, New York, 49–63.

    Google Scholar 

  • HAMNER, W.M. 1985. The importance of ethology for investigations of marine zooplankton. Bull. of Marine Science 37, 414–424.

    Google Scholar 

  • COOKE, J.G. and J.R. BEDDINGTON. 1984. The relationship between catch rates and abundance in fisheries. lMA J. Math. Appl. Med. & Biol. 1, 391–405.

    Google Scholar 

  • CUSHING, D.H. 1982. Climate and Fisheries. Academic Press, New York.

    Google Scholar 

  • DeBOUZIE, D. and THIOULOUSE. 1986. Statistics to find spatial and temporal structures in populations. In Pest Control: Operations and Systems Analysis in Fruit Fly Management (M. Mangel et al., editors), Springer Verlag, New York, P. 263–282.

    Google Scholar 

  • DELINCE, J. 1986. Robust density estimation through distance measurements. Ecology 67, 1576 1581.

    Google Scholar 

  • DENNIS, B. and G.P. PATIL. 1984. The gamma distribution and weighted multimodel gamma distributions as models of population abundance. Math. Biosci. 68, 187–212.

    Google Scholar 

  • DIAMOND, J. and r.r. CASE. 1986. Community Ecology. Harper and Row, NewYork.

    Google Scholar 

  • DIGGLE, P. 1983. Statistical Analysis of Spatial Point PatternsAcademic Press, New York.

    Google Scholar 

  • DUPONT, W.D. 1983. A stochastic catch–effort method for estimating animal abundance. Biometries 39, 1021–1033.

    Google Scholar 

  • ETIERSHANK, G. 1984. A new approach to the assessment of longevity in the antarctic krill Euphausia superba. J. Crustacean Biol. 4, 295–305.

    Google Scholar 

  • FOX, W.W. 1974. An overview of production modeling. Int. Comm. Consv. At. Tunas. ceu Val. Sei. Pap. 3, 142–156.

    Google Scholar 

  • FRYE, R. 1983. Climatic change and fisheries management. Natural Resources J.

    Google Scholar 

  • GERRITSEN, J. and J.R. STRICKLER 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Bd. Can. 34, 73–82.

    Google Scholar 

  • GETZ, W.M., G.L. SWARTZMAN, and R.C. FRANCIS. 1985. A conceptual model for multispecies, multifleet fisheries. In Resource Management (M. Mangel, ed.), Springer Verlag, New York, 49–63.

    Google Scholar 

  • HAMNER, W.M. 1985. The importance of ethology for investigations of marine zooplankton. Bull. of Marine Science 37, 414–424.

    Google Scholar 

  • HEDGPETH, J. 1957. Concepts of marine ecology. Chapter 3 in Treatise on Marine Ecology and Paleoecology, Vol I, Ecology. (J.W. Hedgpeth, ed.).

    Google Scholar 

  • HELFMAN, G.S. 1978. Patterns of community structure in fishes: summary and overview. Env. Bio!. Fish. 3, 129–148.

    Google Scholar 

  • HEWITf, R. 1981. The value of pattern in the distribution of young fish Rapp. P.–v. Reun. Cons, int. Explor. Mer. 178, 229–236.

    Google Scholar 

  • HEWITf, R., A. BINDMAN, and N. LO. 1984. Procedures for calculating the egg production estimate of spawning biomass. Administrative Report U84– 19, Southwest Fisheries Center, La Jolla, Ca.

    Google Scholar 

  • HICKEY, B.M. 1979. The California current system – hypotheses and facts Prog. Ocean. 8, 191–279.

    Google Scholar 

  • IVANOV, B.G. 1970. On the biology of the Antarctic krill Euphausia superba Mar. Biol. 7, 34D–351.

    Google Scholar 

  • JILLET, J.B. and J.R. ZELDIS. 1985. Aerial observations of surface patchiness of a planktonic crustacean. Bull, Marine Science 37, 609–619.

    Google Scholar 

  • JOHNSON, N.L. and S. KOTZ. 1969. Discrete Distributions. John Wiley and Sons, New York.

    Google Scholar 

  • KALINOWKSI, J. and Z. WITEK. 1982. Forms of Antarctic krill aggregations ICES Biological Oceanography Committee Mimeo. 1982 L, 60,8 pp.

    Google Scholar 

  • KALINOWKSI, J. and Z. WITEK. 1985. Scheme for classifying aggregations of Antarctic krill. Biomass Handbook, to appear.

    Google Scholar 

  • KINGSlAND, S. 1985. Modeling Nature. Episodes in the History of Population Biology. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • LASKER, R. 1981. Marine Fish Larvae. University of Washington Press, Seattle, WA.

    Google Scholar 

  • LASKER, R. 1985. An Egg Production Method for Estimating Spawning Biomass of Pelagic Fish: Application to the Northern Anchovy, Engraulis mordax. NOAA Technical Report NMFS 36, US Dept. of Commerce, NTIS, Springfield, VA.

    Google Scholar 

  • LAWS, R.M. 1977. Seals and whales of the southern ocean. Phil, Trans. R. Soc. Lon. B279, 81–96.

    Google Scholar 

  • LEMKE, P. 1977. Stochastic climate models, part 3. Application to zonally averaged energy models. Tellus 29, 385–392.

    Google Scholar 

  • LO, N.C.H. 1984. Egg production of the central stock of northern anchovy, Engraulis mordax, 1951–82. Fish. Bul!. V.S. 83, 137–150.

    Google Scholar 

  • MacCALL, A.D. 1979. Population estimates for the waning years of the Pacific sardine fishery. Calif. Coop. Ocean. Fish. Invest. Rep. 20, 72–82.

    Google Scholar 

  • MacCALL, A.D. 1984a. Management Information Document for California Coastal Pelagic Fishes. AdministrativeReport U–84–39, Southwest Fisheries Center, LaJolla, Ca.

    Google Scholar 

  • MacCALL, A.D. 1984b. Report of a NMFS–CDF&G Workshop on Estimating Pelagic Fish Abundance. Administrative Report U–84–40, Southwest Fisheries Center, La Jolla, Ca.

    Google Scholar 

  • MACKINTOSH, NA. 1972. Life cycle of Antarctic krill in relation to ice and water conditions. Discovery Reports, 36, 1–94.

    Google Scholar 

  • MACKAS, D. L., K.L. DENMAN, and M.R. ABBOIT. 1985. Plankton patchiness biology in the physical vernacular. Bull. Marine Science 37, 652674.

    Google Scholar 

  • MANGEL, M. 1982. Aggregation and fishery dynamics: multiple time scales, fluctuations, and time to extinction. Eeological Modelling 15, 191–209.

    Google Scholar 

  • MANGEL, M. 1986. Tbe relationship between cateh per unit effort and stock abundance. Report 86–1, Sea Grant Projeet RF–109, Department of Mathematics, University of California, Davis.

    Google Scholar 

  • MANGEL, M. and P.E. SMITH. 1988. Presence–absence sampling for fisheries management. Can. J. Fish, Aq. Sei., submitted.

    Google Scholar 

  • MARR, J. 1962. The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Reports 32, 37–463.

    Google Scholar 

  • MAY, R.M. 1984. Exploitation of Marine Communities. Springer Verlag, Berlin.

    Google Scholar 

  • MAY, R.M., J.R. BEDDINGTON, C.W. CLARK, SJ. HOLT, and R.M. LAWS. 1979 Management of multispecies fisheries, Science 205, 267–277.

    Google Scholar 

  • McCOY, E.D., S.S. BELL, and K WALTERS. 1986. Identifying biotic boundaries along environmental gradients. Ecology 67, 749–759.

    Google Scholar 

  • MEAD, R. 1974. A test for spatial pattern at several scales using data from a grid of contiguous quadrats. Biometries 30, 295–307.

    Google Scholar 

  • MOREJOHN, G.V., J. HARVEY, and L. KRASNOW. 1978. The importance of Loligo opalescens in the food web of marine invertebrates in Monterey Bay, California. In Biological, Oceanographic, and Acoustic Aspects of the Market Squid Loligo opalescens (C. Recksiek and H. Frey, eds.), Calif. Dept. Fish. and Game, Fish. Bull. 169, p. 67–98. rvllTRPHY, G.I. 1977. Clupeoids, in JA. Gulland, (ed.), Fish Population Dynamics, Wiley Interscience, New York, 283–308.

    Google Scholar 

  • NEWMAN, G.G. 1984. Management techniques for multispecies fisheries. In R.M. May, (ed.), Exploitation oe Marine Communities, Springer–Verlag, Berlin, 245–262.

    Google Scholar 

  • O’HARA, K. 1986. Fish behaviour and the management of freshwater fisheries, Chapter 19 in Behavior of Teleost Fishes (T.J. Pitcher, ed.) Johns Hopkins University Press, Baltimore, Md.,

    Google Scholar 

  • OMORI, M. and W.M. HAMNER. 1982. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72, 193200.

    Google Scholar 

  • PALOHEI~IO, J.E. and L.M. DICKIE. 1964. Abundance and fishing success Rapp. P.–v. Cons. int. Explor. Mer. 155, 152–163.

    Google Scholar 

  • PARRISH, R.H., C.S. NELSON, and A. BAKUN. 1981. Transport mechanisms and reproductive success of fishes in the California current. Biol. Ocean. 1, 175–203.

    Google Scholar 

  • PAULY, D. 1982. Dynamics of multispecies stocks. Mar. Policy Journal, 72–74.

    Google Scholar 

  • PENNINGTON, M. 1983. Efficient estimators of abundance, für fish and plankton surveys. Biometries 39,281–286.

    Google Scholar 

  • PERRY, J.N. and L.R. TAYLOR. 1986. Stability of real interacting populations in space and time: implications, alternatives and the negative binomial kc. J. Animal Ecology 55, 1053–1068.

    Google Scholar 

  • PETERMAN, R.M. and G.l. STEER. 1981. Relation between sportfishing catchability coefficients and salmon abundance. Trans. Amer. Fish. Soc. 110, 585–593.

    Google Scholar 

  • PIMM, S.L. 1984. The eomplexity and stability of real eeosystems. Nature 307, 321–326.

    Google Scholar 

  • POPE, J.G. 1980. Some eonsequenees for fisheries management of aspeets of the behaviour of pelagie fish. Rapp. P–v. Reun. Const. int. Explor. Mer. 177, 466–476.

    Google Scholar 

  • PRITCHARD, D.W., R.O. REID, A. OKUBO, and H.H. CARTER. 1971. Physical proeesses of water movement and mixing. In Radioaetivity in the Marine Environment, National Academy of Seienees, Washington, D.C. p.90–136.

    Google Scholar 

  • QUINN, TJ., S.H. HOAG, and G.M. SOUTHWARD. 1982. Comparison of two methods of eombining cateh–per–unit–effort data from geographie regions. Can. J. Fish. Aq. Sei. 39, 837–846.

    Google Scholar 

  • REINHOLD, B. 1987. Weather regimes: the ehallenge in extended range fore casting. Seienee 235, 437–441.

    Google Scholar 

  • RICHARDS, L.J. and J.T. SCHNUTE. 1986. An experimental and statistieal approach to the question: is CPUE an index of abundance? Can. J. Fish. Aq. Sei. 43, 1214–1227.

    Google Scholar 

  • RICKER, W.E. 1940. Relation of ”eatch per unit effort” to abundanee and rate of exploitation. J. Fish. Res.Bd. Can. 5, 43–70.

    Google Scholar 

  • RICKLEFS, R.E. 1987. Community diverstiy: Relative roles of loeal and regional proeesses. Seienee 235, 167–171.

    Google Scholar 

  • RIFFENBURGH, R.H. 1%9. A stochastie model of interpopulation dynamics in marine ecology. J. Fish. Res. Bd. Can. 26, 2843–2880.

    Google Scholar 

  • RIPLEY, B.D. 1981. Spatial Statistics. Wiley Interscience, New York. 252 pp.

    Google Scholar 

  • ROSENZWEIG, M.L. 1981. A theory of habitat selection. Ecology 62,327335.

    Google Scholar 

  • ROSENZWEIG, M.L. 1985. Some theoretical aspects of habitat seleetion Chapter 18 in Habitat Selection in Birds, Aeademie Press, New York.

    Google Scholar 

  • ROSENZWEIG, M. L. 1987. Habitat seleetion theory. in Control Theory Applied to Natural Resouree Management, (T. Vincent et al. eds). Leeture Note in Biomathematics, Vol. 72, Springer–Verlag, New York.

    Google Scholar 

  • ROSENZWEIG, M.L. and Z. ABRAMSKY. 1985. Deteeting density dependent habitat selection. Ameriean Naturalist 126,405–417.

    Google Scholar 

  • ROTHSCHILD, BJ. 1986. Dynamics oe Marine Fish Populations. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • SEITE, O.E. and E.H. AHLSTROM. 1948. Estimations of abundance of the eggs of Pacific pilchard (Sardinops caerulea) off southern California during 1940 and 1941. J. Mar. Res. 7, 511–542.

    Google Scholar 

  • SHELDON, R.W. and T.R. PARSONS. 1967. A continuous size spectrum for particu1ate matter in the sea. J. Fish. Res. Bd. Can. 24, 909–915.

    Google Scholar 

  • SMITH, P.E. 1973. The mortality and dispersal of sardine eggs and larvae. Rapp. P.–v. Cons. int. Explor. Mer. 164, 282–292.

    Google Scholar 

  • SMITH, P.E. 1978. Biological effects of ocean variability: time and space sca1es of biological response. Rapp. P.–v. Cons. int. Explor. Mer. 173, 117–124.

    Google Scholar 

  • SMITH, P.E. and R.P. HEWIIT. 1985. Anchovy egg dispersal and mortality as inferred from close–interval observations. CalCOFI Rep. 26, 97–110.

    Google Scholar 

  • SMITH, P.E. and S.L. RICHARDSON. 1977. Standard Techniques for Pelagic Fish Egg and Larva Surveys. FAO Technical Paper No. 175, FAO, Rome, Italy.

    Google Scholar 

  • SOUTAR, A. and J. ISAACS. 1974. Abundance of pelagic fish during the 19th and 20th centuries as recorded in anaerobic sediment off the Californias. Fish. Bull. V.S. 72, 257–273.

    Google Scholar 

  • SOUTHWOOD, T.R.E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46, 337–365.

    Google Scholar 

  • STEELE, J.H. 1984. Kinds of variability and uncertainty affecting fisheries. in R.M. May, (ed.), Exploitation of Marine Communities, Springer–Verlag, Berlin, 245–262.

    Google Scholar 

  • STOLYARENKO, DA. 1986. Data analysis of trawl shrimp survey with spline approximation of stock density. C.M. 1986 K, 25, Int. Coun. Explor. Seas.

    Google Scholar 

  • TAFf, BA. 1960. A statistical study of the estimation of abundance of sardine (Sardinops caeruleaj eggs. Limn. Ocean. 5, 245–264.

    Google Scholar 

  • TAYLOR, C.C. 1953. Nature of Variability in Trawl Catches. Fishery Bulletin 54, 145–165.

    Google Scholar 

  • TAYLOR, L.R. 1971. Aggregation as a species characteristic. In Statistical Ecology, Volume 1 (G.P. Patil et ale eds.), Pennsylvania State University Press, University Park, Pa. p. 356–377.

    Google Scholar 

  • TAYLOR, L.R., I.P. WOIWOD, and J.N. PERRY. 1979. The negative binomial as adynamie ecological model for aggregation, and the density dependence of k. J. Anim. Ecol. 48, 289–304.

    Google Scholar 

  • ULLTANG, O. 1980. Factors affecting the re action of pelagic fish stocks to exploitation and requiring a new approach to assessment and management. Rapp. P.–v. Reun. Cons. int. Explor. Mer. 177,489–504.

    Google Scholar 

  • WICKETT, W.P. 1967. Ekman transport and zooplankton concentration in the North Pacific ocean. J. Fish. Res. Bd. Can. 24, 581–594.

    Google Scholar 

  • WIEBE, P.H. 1971. A computer model study of zooplankton patchiness and its effects on sampling error. Limn. Ocean. 16, 29–38.

    Google Scholar 

  • WIEBE, P.H. and W.R. HOLLAND. 1%8. Plankton patchiness: effects on repeated new tows. Limn. Ocean. 13,315–321.

    Google Scholar 

  • WILOMOVSKY, NJ. 1985. The need for formalization of decision algorithms and risk levels in fishery research and management. Can. J. Fish. Aq. Sei. 42,258–262.

    Google Scholar 

  • WINANT, C.D. and A.W. BRATKOVICH. 1981. Temperature and currents on the southern California shelf: a description of variability. J. Phys. Ocean 11,71–86.

    Google Scholar 

  • WOLF, P. and P.E. SMITH. 1985. An inverse egg production method for determining the relative magnitude of Pacific sardine spawning biomass off California. CalCOFI Rep. 26, 130–138.

    Google Scholar 

  • WOLF, P. and P.E. SMITH. 1986. The relative magnitude of the 1985 Pacific sardine spawning biomass off southern California. CalCOFI Rep., to appear.

    Google Scholar 

  • ZAHL, S. 1977. A comparison of three methods for the analysis of spatial pattern. Biometries 33, 681–692.

    Google Scholar 

  • AHL, S. 1982a. Comment on the Beddington and Cooke age–specific assessment model for the sperm whale population. Rep. Int. Whal. Comm. 32, 235–238.

    Google Scholar 

  • ZAHL, S. 1982b. Bias of the CPUE using search time as effort measure. Rep. Int. Whal. Comm. 32, 809–813.

    Google Scholar 

  • ZWEIFEL, J.R. 1973. A non–parametric approach to the estimation of change in fish population size from egg and larval surveys. Rapp. P –v. Renn. Const. int. Explor. Mer. 164, 276–281.

    Google Scholar 

  • ZWEIFEL, J.R. and P.E. SMITH. 1981. Estimates of abundance and mortality of larval anchovies (1951–75): application of a new method, Rapp. P.–v. Cons, int. Explor. Mer. 178, 248–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this paper

Cite this paper

Mangel, M., Fox, W.W. (1988). From Egg Surveys to Ecosystem Models: Biological Assumptions in Fisheries Management. In: Wooster, W.S. (eds) Fishery Science and Management. Lecture Notes on Coastal and Estuarine Studies, vol 28. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2004-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2004-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96841-4

  • Online ISBN: 978-1-4757-2004-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics