Skip to main content

Part of the book series: Springer Series in Microbiology ((SSMIC))

  • 204 Accesses

Abstract

The first problem facing the early bacterial geneticist was to prove that bacteria did have inherited traits. The earliest presumption was that bacteria and other microorganisms were too small to have any phenotypic traits that could be studied. That concept was disabused by the work of Beadle and Tatum, who demonstrated that biochemical reactions could be used as phenotypic traits and developed the famous “one gene—one enzyme” hypothesis. There was, however, still one remaining area of uncertainty about the existence of bacterial genetics. Many workers thought that the hypothesis of Lamarck regarding the inheritance of acquired traits was true for bacteria even though it had already been disproved for the higher eukaryotes. The first task of the fledgling science of bacterial genetics was to prove that the same processes of mutation that had already been shown to occur in eukaryotes also occurred in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Hatfield, D. (1985). Suppression of termination codons in higher eukaryotes. Trends in Biochemical Sciences 10:201–204.

    Article  CAS  Google Scholar 

  • Murgola, E.J. (1985). tRNA, suppression, and the code. Annual Review of Genetics 19: 57–80.

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin, K. (1986). Advantages to mutagenesis techniques generating populations containing the complete spectrum of single codon changes. Journal of Theoretical Biology 123: 261–279.

    Article  PubMed  CAS  Google Scholar 

  • Wada, A., Suyama, A. (1986). Local stability of DNA and RNA secondary structure and its relation to biological functions. Progress in Biophysics and Molecular Biology 47: 113–157.

    Article  PubMed  CAS  Google Scholar 

Specialized

  • Bouadloun, F., Srichaiyo, T., Isaksson, L.A., Björk, G.R. (1986). Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. Journal of Bacteriology 166: 1022–1027.

    PubMed  CAS  Google Scholar 

  • Brown, T., Hunter, W.N., Kneale, G., Kennard, 0. (1986). Molecular structure of the G•A base pair in DNA and its implications for the mechanism of trans-version mutations. Proceedings of the National Academy of Sciences of the United States of America 83: 2402–2406.

    CAS  Google Scholar 

  • Burns, P.A., Gordon, A.J.E., Glickman, B.W. (1987). Influence of neighboring base sequence on N-methyl-N’-nitro-N-nitrosoguanidine mutagenesis in the lacl gene of Escherichia coli. Journal of Molecular Biology 194: 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza, L.L., Lederberg, J. (1956). Isolation of pre-adaptive mutants in bacteria by sib selection. Genetics 41: 367–381.

    PubMed  CAS  Google Scholar 

  • Cline, S.W., Yarus, M., Wier, P. (1986). Construction of a systematic set of tRNA mutants by ligation of synthetic oligonucleotides into defined single-stranded gaps. DNA 5: 37–51.

    Article  PubMed  CAS  Google Scholar 

  • Ganoza, M.C., Kofoid, E.C., Marliere, P., Louis, B.G. (1987). Potential secondary structure at translation-initiation sites. Nucleic Acids Research 15: 345–360.

    Article  PubMed  CAS  Google Scholar 

  • Gorini, L., Kaufman, H. (1960). Selecting bacterial mutants by the penicillin method. Science 131: 604–605.

    Article  PubMed  CAS  Google Scholar 

  • Jukes, T.H. (1985). A change in the genetic code in Mycoplasma capricolum. Journal of Molecular Evolution 22: 361–362.

    Article  PubMed  CAS  Google Scholar 

  • Kück, U., Neuhaus, H. (1986). Universal genetic code evidenced in mitochondria of Chlamydomonas reinhardii. Applied Microbiology and Biotechnology 23: 462–469.

    Article  Google Scholar 

  • Koch, A.L. (1983). Mutations and growth rates from Luria-Delbrück fluctuation tests. Mutation Research 95: 129–143.

    Article  Google Scholar 

  • Lederberg, J., Lederberg, E.M. (1952). Replica plating and indirect selection of bacterial mutants. Journal of Bacteriology 63: 399–406.

    PubMed  CAS  Google Scholar 

  • Leong, P-M., Ksia, H.C., Miller, J.H. (1986). Analysis of spontaneous base substitutions generated in mismatch-repair-deficient strains of Escherichia coli. Journal of Bacteriology 168: 412–416.

    PubMed  CAS  Google Scholar 

  • Livak, K.J., Whitehorn, E.A. (1986). Half-site editing; an in vitro mutagenesis procedure for truncating a DNA fragment and introducing a new restriction site. Analytical Biochemistry 152: 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Paolozzi, L., Ghelardini, P. (1986). General method for the isolation of conditional lethal mutants in any required region of the virus genome: its application to the semi-essential region of phage Mu. The Journal of General Microbiology 132: 79–82.

    CAS  Google Scholar 

  • Richardson, K.K., Richardson, F.C., Crosby, R.M., Swenberg, J.A., Skopek, T.R. (1987). DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proceedings of the National Academy of Sciences of the United States of America 84: 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J.J., Berg, C.M. (1971). Differential recovery of auxotrophs after penicillin enrichment in E. coli. Journal of Bacteriology 106: 297–300.

    PubMed  CAS  Google Scholar 

  • Trifonov, E.N. (1987). Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. Journal of Molecular Biology 194: 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Witkin, E.M. (1956). Time, temperature and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harbor Symposia on Quantitative Biology 21: 123–140.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R.D., Hutchison, F. (1987). Ultraviolet light-induced mutagenesis in the Escherichia coli chromosome: sequences of mutants in the cI gene of a lambda lysogen. Journal of Molecular Biology 193: 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C-I., Maeda, N. (1987). Inequality in mutation rates of the two strands of DNA. Nature 327: 169–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (1988). Mutations and Mutagenesis. In: Bacterial and Bacteriophage Genetics. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1995-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1995-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1997-0

  • Online ISBN: 978-1-4757-1995-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics