Skip to main content

Role of Imidization in Thermal Hydrolysis of Polyacrylamides

  • Chapter

Abstract

Polyacrylamides (PAm), including copolymers having acrylamide as the major component, have been a popular model system in many recent studies of water-soluble polymersl1–13. In the literature there is general agreement that longer heating of dilute aqueous PAm solutions at higher temperatures favors the formation of carboxylates. Intermolecular imidization resulting from heating solid PAm also is widely reported1,3,6,7,13. However evidence varies as to whether intramolecular imidization occurs to any detectable extent in aqueous PAm solutions1,3,4,13,14. Only Sawant and Morawetz report imidization as a reaction pathway in alkaline hydrolysis of PAm4. Guerrero, et a1.10,13, on the other hand, report seeing no intramolecular imide structure using a variety of characterization techniques. Generally speaking, the opinions have been widely divided in the literature on this particular issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minsk, L. M., Kotlarchick, C., Meyer, G. N. and Kenyon, W. O., Imidization During Polymerization of Acrylamide, J. Polym. Chem. Ed., 12:133 (1974).

    Article  CAS  Google Scholar 

  2. Cais, R. E. and Stuk, G. J., Copolymerization of Acrylamide with Sulfur Dioxide. Determination of the Effect of Copolymerization Temperature on the Monomer Sequence Distribution by 13C N.M.R., Polym., 19: 179 (1978).

    Article  CAS  Google Scholar 

  3. Shepitka, J. S., Case, C. E., Donaruma, L. G., Hatch, M. J., Kilmer, N. H., Khune, G. D., Martin, F. D., Ward, J. S. and Wilson, K. V., Partially Imidized, Water-Soluble Polymeric Amides. I. Partially Imidized Polyacrylamide and Polymethacrylamide, J. Appl. Polym. Sci., 28: 3611 (1983).

    Article  CAS  Google Scholar 

  4. Savant, S. and Morawetz, H., Reaction of Polyacrylamide Provides Evidence for Some Head-to-Head Addition of Monomer Residues, J. Polym. Sci., Polym. Lett. Ed., 20:385 (1982).

    Article  Google Scholar 

  5. Lancaster, J. E. and O’Connor, M. N., High Field 13C-NMR Study of the Stereoregularity of Polyacrylamide, J. Polym. Sci., Polym. Lett. Ed., 20:547 (1982).

    Article  CAS  Google Scholar 

  6. Kishore, K. and Santhanalakshmi, R. N., Studies on Thermal Polymerization of Acrylamide, J. Macromol. Sci., Chem. Ed., A16(5):941 (1981).

    Article  Google Scholar 

  7. McCormick, C. L., Chen, G. S. and Hutchinson, B. H., Water-Soluble Copolymers. V. Compositional Determination of Random Copolymers of Acrylamide with Sulfonated Comonomers by Infrared Spectroscopy and C13 Nuclear Magnetic Resonance, J. Appl. Polym. Sci., 27: 3103 (1982).

    CAS  Google Scholar 

  8. Inoue, Y. Fukutomi, T. and Chujo, R., Carbon-13 NMR Analysis of the Tacticity of Polyacrylamide, Polym. J., 15: 103 (1983).

    Article  CAS  Google Scholar 

  9. Panzer, H. P., Halverson, F. and Lancaster, J. E., Carboxyl Sequence Distribution in Hydrolyzed Polyacrylamide, Polym. Mater. Sci. Eng., 51: 268 (1984).

    CAS  Google Scholar 

  10. Zurimendi, J. A., Guerrero, S. J. and Leon, V., The Determination of the Degree of Hydrolysis in Poly(acrylamides): Simple Methods using C13 N.M.R. and Elementary Analysis, Polym., 25: 1314 (1984).

    Article  CAS  Google Scholar 

  11. Leung, W. M., Axelson, D. E. and Syme, D., Determination of Charge Density of Anionic Polyacrylamide Flocculants by NMR and DSC, Coll. Polym. Sci., 263: 812 (1985).

    CAS  Google Scholar 

  12. Halverson, F., Lancaster, J. E. and O’Connor, M. N., Sequence Distribution of Carboxyl Groups in Hydrolyzed Polyacrylamide, Macromolecules, 18: 1139 (1985).

    Article  CAS  Google Scholar 

  13. Guerrero, S. J., Boldarino, P. and Zurimendi, J. A., Characterization of Polyacrylamides Used in Enhanced Oil Recovery, J. Appl. Polym. Sci., 30: 955 (1985).

    Article  CAS  Google Scholar 

  14. Maurer, J. J., Harvey, G. D. and Rlemann, L. P., Thermally Promoted Hydrolysis of Polyacrylamide, Polym. Mater. Sci. Eng., 55: 705 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moradi-Araghi, A., Hsieh, E.T., Westerman, I.J. (1988). Role of Imidization in Thermal Hydrolysis of Polyacrylamides. In: Stahl, G.A., Schulz, D.N. (eds) Water-Soluble Polymers for Petroleum Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1985-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1985-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3209-9

  • Online ISBN: 978-1-4757-1985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics