Skip to main content

Dynamic Uniaxial Extensional Viscosities and Their Importance in the Mechanical Stability of Water-Soluble Carbohydrate Polymer Solutions

  • Chapter
Water-Soluble Polymers for Petroleum Recovery

Abstract

The mechanical stabilities of a series of carbohydrate polymers are examined and correlated to aqueous solution dynamic uniaxial extensional viscosities. Both properties relate to the carbohydrate polymer’s conformation in aqueous solution. As noted in the stability of guaran solutions this property is not reflected by Mark-Houwink coefficients determined under static conditions. Helical or rigid rod carbohydrate polymers exhibit the greatest mechanical stability in solution. Solution blends of the carbohydrate polymers with high molecular weight poly(oxyethylene) also were studied. Unique rheological responses were observed in Sclerotium glucanium polysaccharide/poly(oxyethylene) blends at equal weight percents (e.g., lower, low-shear-rate viscosities and the absence of a high extensional viscosity), suggesting complexation. Such complexation appears to effectively disrupt the three dimensional structure of Sclerotium glucanium polysaccharide in aqueous solution (storage modulus studies) and decrease the flexibility of poly(oxyethylene).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, H.L. J. Pet. Tech. (1978), 113–1128.

    Google Scholar 

  2. Thomas, D. Soc. Pet. Eng. J. (1982), 171–180.

    Google Scholar 

  3. Maerker, J.M. Soc.Pet. Eng. J. (1975), 311–322.

    Google Scholar 

  4. Zakin, J.L.; Hunston, D.L. J. Appl. Polym. Sci. (1978), 22, 1763.

    Article  CAS  Google Scholar 

  5. Merril, E.W.; Leopairat, P. Polym. Eng. Sci. (1980), 20 (7), 505.

    Article  Google Scholar 

  6. Leopairat, P., Ph.D. Thesis, Massachusetts Institute of Technology (1982).

    Google Scholar 

  7. Ferrel, C.J.; Keller, A.; Miles, M.J.; Pope, D.P. Polymer (1980), 21, 1292.

    Article  Google Scholar 

  8. Miles, M.J.; Tanaka, K.; Keller, A. Polymer (1983), 24, 1801.

    Article  Google Scholar 

  9. Holzwarth, G. Biochemistry (1976), 15 (19), 4333.

    Article  CAS  Google Scholar 

  10. Southwick, J.G.; Lee. H.; Jamieson, A.M. Carbohydr. Res. (1980), 84, 287.

    Article  CAS  Google Scholar 

  11. Sato, T.; Norisuye, T.; Fujita, H. Macromolecules (1984), 17, 2696.

    Article  CAS  Google Scholar 

  12. Norisuye, T.; Yanake, T.; Fujita, H. J. Polym. Sci. Physics Ed. (1980), 18, 547.

    Google Scholar 

  13. Kashiwagi, Y.; Norisuye, T.; Fujita, H. Macromolecules (1981), 14, 1220.

    Article  CAS  Google Scholar 

  14. Van Wazer J.R.; Lyons, J.W.; Kim, K.Y.; Colwell, R.E. “Viscosity and Flow Measurement; a Laboratory Handbook of Rheology”; Interscience Pub., New York, N.Y., 1963.

    Google Scholar 

  15. Weinberger, C.B.; Goddard, J.D. Int. J. Multiphase Flow (1974), 1, 465.

    Article  Google Scholar 

  16. Hudson, N.E.; Ferguson, J.; Mackie, P. Trans.Soc.Rheol. (1974), 18, 541.

    Article  CAS  Google Scholar 

  17. Khagram, M.; Gupta, R.K.; Sridhar, T. J. Rheol. (1985), 29 (2), 191.

    Article  CAS  Google Scholar 

  18. Fernando, R.H.; Soules, D.A.; Glass, J. E. J.Rheo. in press

    Google Scholar 

  19. Foweraker, A.R.; Jennings, B.R. Makromol. Chem. (1977), 178, 505.

    Article  CAS  Google Scholar 

  20. Flory,P.J., “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, 1953, Chap.14.

    Google Scholar 

  21. Glass, J.E. J. Coatings Technol. (1978), 50 (640), 61.

    CAS  Google Scholar 

  22. Lambert, F.; Milas, M.; Rinaudo, M. Proceedings XIth International Carbohydrate Sym., Univ. British Columbia 1982 22–28, Vancouver, B.C., Canada.

    Google Scholar 

  23. Frangon, S.A.; Morris, E.R.; Rees, D.A.; Richardson, R.K.; Murphy, S.B. J. Polym. Sci.: Polym. Letters Ed. (1982), 20, 531–538.

    Google Scholar 

  24. Robinson, G.; Ross-Murphy, S.B.; Morris, E.R. Carbohyd.Res. (1982), 107, 17.

    Article  CAS  Google Scholar 

  25. Gruber, E.; Soehendra, B.; Schurz, J. J. Polym.Sci. (1974), N-44,195.

    Google Scholar 

  26. Glass, J.E.; Ahmed, H.; Karunasena, A.; McCarthy, G.J. Colloids and Surfaces (1986), 21, 323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soules, D.A., Glass, J.E. (1988). Dynamic Uniaxial Extensional Viscosities and Their Importance in the Mechanical Stability of Water-Soluble Carbohydrate Polymer Solutions. In: Stahl, G.A., Schulz, D.N. (eds) Water-Soluble Polymers for Petroleum Recovery. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1985-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1985-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3209-9

  • Online ISBN: 978-1-4757-1985-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics