Conformational Analysis of Xanthan and Welan Using Electron Microscopy

  • B. T. Stokke
  • O. Smidsrød
  • A. B. L. Marthinsen
  • A. Elgsaeter


Electron microscopy of xanthan indicates that this biopolymer can exist as a single- or double-stranded or partly dissociated double-stranded structure depending on the ionic strength prior to preparation for electron microscopy. Welan appears as a uniform thick, convoluted structure with contour length varying from molecule to molecule. The two-dimensional spatial correlation of the tangent direction indicates that the persistence length of double-stranded xanthan in 100mM ammonium acetate is 150 nm; the persistence length of single-stranded xanthan in 2 mM ammonium acetate is observed to be 60 nm and the persistence length of welan in 100 mM ammonium acetate is observed to be 80 nm.


Ammonium Acetate Intrinsic Viscosity Tangent Direction Flocon 4800 Persistence Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Sandford, I.W. Cottrell, and D.A. Pettitt, Microbial polysaccharides: New products and their commercial application, Pure and Appl. Chem., 56:879 (1984).CrossRefGoogle Scholar
  2. 2.
    P.E. Jansson, L. Kenne, and B. Lindberg, Structure of the extracellular polysaccharide from Xanthomonas campestris, Carbohydr. Res. 45:275 (1975).CrossRefGoogle Scholar
  3. 3.
    R. Moorhouse, M.D. Walkinshaw, and S. Arnott, Xanthan gum - molecular conformation and interactions, in: “Extracellular microbial polysaccharides”, P.A. Sandford and A. Laskin, ed., ACS Washington, ACS symposium series 45:81 (1977).Google Scholar
  4. 4.
    K. Okuyama, S. Arnott, R. Moorhouse, M.D. Walkinshaw, E.D.T. Atkins and C. Wolf-Ullish, in: “Solution properties of polysaccharides”, D.A. Brant, ed., ACS Washington, ACS symposium series 141: 411 (1980).Google Scholar
  5. 5.
    T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan: Dissociation behavior in mixtures of water and cadoxen, Polymer J., 17: 729 (1985).CrossRefGoogle Scholar
  6. 6.
    T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan: Dimensional and hydrodynamic properties in 0.1M aqueous sodium chloride. Macromolecules 17: 2696 (1984).CrossRefGoogle Scholar
  7. 7.
    G. Paradossi, and D.A. Brant, Light scattering study of a series of xanthan fractons in aqueous solution, Macromolecules 15: 874 (1982).CrossRefGoogle Scholar
  8. 8.
    T. Sato, T. Norisyue, and H. Fujita, Double stranded helix of xanthan in dilute solution: Evidence from light scattering, Polymer J., 16: 341 (1984).CrossRefGoogle Scholar
  9. 9.
    K.S. Kang, and G.T. Veeder, U.S. Pat. 4,342, 866 (1982).Google Scholar
  10. 10.
    P.E. Jansson, B. Lindberg, G. Widmalm, and P.A. Sandford, Structural studies of an extracellular polysaccharide (S-130) elaborated by Alcaligenes ATCC 31555, Carbohydr Res., 139: 217 (1985).Google Scholar
  11. 11.
    P.T. Attwool, E.T. Atkins, M.J. Miles and V.J. Morris, X-ray fibre diffraction results rom Alcaligenes (AATCC 31555) microbial polysaccharide S-130 and a comparison with getan gum, Carbohydr. Res., 148:C1 (1986).CrossRefGoogle Scholar
  12. 12.
    B.T. Stokke, A. Elgsaeter, G. Skjk-Brk, and O. Smidsrod, The molecular size and shape of xanthan, xylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy Carbohydr. Res. 160:13 (1987).CrossRefGoogle Scholar
  13. 13.
    M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28:350 (1956).CrossRefGoogle Scholar
  14. 14.
    J.M. Tyler, and D. Branton, Rotary shadowing of extended molecules dried from glycerol, J. Ultrastruct. Res., 71: 95 (1980).CrossRefGoogle Scholar
  15. 15.
    B.T. Stokke, A. Elgsaeter, and O. Smidsrod, Electron microscopic study of single-and double-stranded xanthan, Int. J. Biol. Macron*, 8: 217 (1986).CrossRefGoogle Scholar
  16. 16.
    M. Troll, K.R. Dill, and B.H. Zimm, Dynamics of polymer solutions. 3. An instrument for stress relaxations on dilute solutions of large polymer molecules, Macromolecules. 13: 436 (1980).CrossRefGoogle Scholar
  17. 17.
    H. Yamakawa, and T. Yoshizaki, Transport coeffecients of helical worm-like chains. 3. Intrinsic viscosity, Macromolecules. 13: 643 (1980).CrossRefGoogle Scholar
  18. 18.
    I.T. Norton, D. M. Goodall, S. A. Frangou, E.R. Morris, and D.A. Rees, Mechanism and dynamic conformational ordering in xanthan polysaccharide, J. Mol. Biol., 175:371 (1984).CrossRefGoogle Scholar
  19. 19.
    S. Paoletti, A. Cesaro, and F. Delben, Thermally induced conformational transition of xanthan polyelectrolyte, Carbohydr. Res., 123:173 (1983).CrossRefGoogle Scholar
  20. 20.
    G: Holzwarth, and E. B. Prestridge, Multistranded helix in Xanthan polysaccharide, Science 197: 757 (1977).CrossRefGoogle Scholar
  21. 21.
    S.L. Wellington, Xanthan gum molecular size distribution and configuration, Polym. Preprints. Prep. Div. Polym. Chem. Ass. Chem. Soc., 22:63 (1981).Google Scholar
  22. 22.
    C. Frontali, E. Dore, A. Ferrauto, E. Gratton, A Bettini, M.R. Pozzan, and E. Valdevit, An abolute method for the determination of the persistence length of native DNA from electron micrographs, Biopolymers 18: 1253 (1979).Google Scholar
  23. 23.
    B.A. Burton, and D.A. Brant, Comparative flexibility, extension and conformation of some simple polysaccharide chains, Biopolymers. 22:1769 (1983).CrossRefGoogle Scholar
  24. 24.
    G. Muller, J. Lecourtier, G. Chauveteau, and C. Allain, Conformation of the xanthan molecule in an ordered structure, Makromol. Chem. Rap. Commun. 5: 203 (1984)CrossRefGoogle Scholar
  25. 25.
    H. Hofman, T. Voss, K. Kuhn, and J. Engel, Localization of flexible sites in thread-like molecules from electron micrographs, J. Mol Biol.. 172:325 (1984).CrossRefGoogle Scholar
  26. 26.
    O. Smidsrrd, and A. Haug, Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths, Biopolymers. 10: 1231 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • B. T. Stokke
    • 1
  • O. Smidsrød
    • 1
  • A. B. L. Marthinsen
    • 1
  • A. Elgsaeter
    • 1
  1. 1.Norwegian Biopolymer Center, Division of Biophysics and BiotechnologyUniversity of TrondheimTrondheim - NTHNorway

Personalised recommendations