Absolute MWD’s of Polyacrylamides by Sedimentation and Light Scattering

  • G. Holzwarth
  • L. Soni
  • D. N. Schulz
  • J. Bock


There is at present no rapid, reliable commercial method for determining the molecular weight distribution of polyacrylamides, especially for molecular weights exceeding 5 × 106. Size exclusion chromatography, or SEC, which might be expected to be the method of choice, has molecular weight, polarity, and shear degradation limitations for very high MW polymers.1–5 Recently, we reported a new absolute MWD method for high molecular weight water-soluble polymers based upon the combination of band sedimentation and low-angle laser light scattering, termed S/LALLS.6 The advantages of this new method include applicability for polymers with M = 106 to 108, automatic sample clarification, minimal adsorption problems, no shear degradation, and the use of commercial components. Two other new methods, hydrodynamic chromatography and field-flow-fractionation, have also been developed recently to meet the need for new separation techniques.7,8


Carbon Capture Partial Specific Volume Refractive Index Increment HPAM Polymer Preparative Ultracentrifuge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Slagowsky, L. J. Fetters, and D. McIntyre, Macromolecules 8: 691 (1975).CrossRefGoogle Scholar
  2. 2.
    L. Soltes, D. Berek, and S. Mikulsova, J. Colloid Polym. Sci. 258: 702 (1980).CrossRefGoogle Scholar
  3. 3.
    A. MacArthur and D. McIntyre, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 24 (2): 102 (1983).Google Scholar
  4. 4.
    W. Siebourg, R. D. Lundberg and R. W. Lenz, Macromolecules 13: 1013 (1980).CrossRefGoogle Scholar
  5. 5.
    H. G. Barth, J. Chromatogr. Sci. 18: 409 (1980).Google Scholar
  6. 6.
    G. Holzwarth, L. Soni and D. N. Schulz, Macromolecules 19: 422 (1986).CrossRefGoogle Scholar
  7. 7.
    D. A. Hoagland, K. A. Larson, and R. K. Prud’homme, in “Modern Methods of Particle Size Analysis”: H. G. Barth, Ed., Wiley, New York, 1984, Chapt. 9.Google Scholar
  8. 8.
    L. E. Schallinger, W. W. Yau, and J. J. Kirkland, Science 225: 434 (1984).CrossRefGoogle Scholar
  9. 9.
    M. K. Brakke, J. Am. Chem. Soc. 73: 1847 (1951).CrossRefGoogle Scholar
  10. 10.
    C. A. Price, “Centrifugation in Density Gradients”, Academic Press: New York, 1982.Google Scholar
  11. 11.
    R. McDiarmid, and P. Doty, J. Phys. Chem. 70: 2620 (1966).CrossRefGoogle Scholar
  12. 12.
    W. Kaye and A. J. Havlik, Applied Optics 12: 541 (1973).CrossRefGoogle Scholar
  13. 13.
    A. C. Ouano and W. Kaye, J. Polym. Sci. 12: 1151 (1974).Google Scholar
  14. 14.
    A. C. Ouano, J. Chromotogr. 118: 303 (1976).CrossRefGoogle Scholar
  15. 15.
    R. C. Jordan, J. Liq. Chromatogr. 3: 439 (1980).CrossRefGoogle Scholar
  16. 16.
    W.-M. Kulicke, R. Kniewske and J. Klein, Prog. Polym. Sci. 8: 373 (1982).CrossRefGoogle Scholar
  17. 17.
    P. J. Flory, “Principles of Polymer Chemistry”; Cornell University Press, Ithaca, NY, 1953.Google Scholar
  18. 18.
    M. B. Huglin, “Light Scattering from Polymer Solutions”, Academic Press, New York, 1972, p. 184.Google Scholar
  19. 19.
    H. Eisenberg, “Biological Macromolecules and Polyelectrolytes in Solution”, Clarendon Press, Oxford, 1976, p. 62.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • G. Holzwarth
    • 1
  • L. Soni
    • 2
  • D. N. Schulz
    • 2
  • J. Bock
    • 2
  1. 1.Department of PhysicsWake Forest UniversityWinston-SalemUSA
  2. 2.Exxon Research and Engineering Co.AnnandaleUSA

Personalised recommendations