Size Characterization of EOR Polymers in Solution

  • R. D. Hester
  • A. D. Puckett


To be successful in the flooding processes used in enhanced oil recovery, polymer molecules must have large hydrodynamic size in aqueous solution. Large hydrodynamic size permits high aqueous solution viscosity at low polymer concentrations. When high polymer concentrations are required to enhance solution viscosity reservoir flooding is not economically attractive. Typical flooding processes use polymer solutions having concentrations of one-half to one gram per liter (500 to 1000 ppm). At these concentrations, solution viscosities from 5 to 10 times that of water must be obtained for sufficient mobility control during flooding.


Shear Rate Dynamic Light Scattering Dynamic Light Scattering Solution Viscosity Intrinsic Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Ann. Physik. 19, (4), 289 (1906).Google Scholar
  2. 2.
    C. L. McCormick, K. P. Blackmon, J. Macromol. Sci., A23, (12),1451 (1986).Google Scholar
  3. 3.
    C. L. McCormick, B. H. Hutchinson, Polymer 27, (4), 623(1986).Google Scholar
  4. 4.
    P. J. Carreau, D. DeKee, M. Daroux, Can. J. Chem. Eng. 57, 135 (1979).Google Scholar
  5. 5.
    K. D. Dreher, W. B. Gogarty, J. Rheology 23 (2), 209 (1979).Google Scholar
  6. 6.
    C. E. Lundy, R. D. Hester, J. Liq. Chrom. 7 (10), 1911(1984).Google Scholar
  7. 7.
    C. E. Lundy, R. D. Hester, J. Poly. Sci. A 24, 1829 (1986).Google Scholar
  8. 8.
    R. D. Hester, P. H. Mitchell, J. Poly. Sci., A. 18, 1727 (1980).Google Scholar
  9. 9.
    R. D. Hester, P. H. Mitchell, J. Liq. Chrom. 7 (8) 1511 (1984).Google Scholar
  10. 10.
    S. W. Provencher, Makromol. Chem. 180, 201 (1979).Google Scholar
  11. 11.
    E. Gulari, Y. Tsunashima, B. Chu, J. Chem. Phys. 70, 3965 (1979).Google Scholar
  12. 12.
    C. Y. Cha, K. W. Min, J. Poly. Sci. B. 21, 807 (1983).Google Scholar
  13. 13.
    J. G. McWhirter, E. R. Pike, J. Phys. A 11 1729 (1978).Google Scholar
  14. 14.
    R. A. Vaidya, M. J. Mettile, R. D. Hester, American Chemical.Soc. Symposium Series 332 Chapter 4, (1987).Google Scholar
  15. 15.
    D. E. Koppel, J. Chem. Phys. 57, 4814 (1972).Google Scholar
  16. 16.
    C. L. McCormick, R. D. Hester, Improved Polymers for Enhanced Oil Recovery-Synthesis and Rheology DOE/BC/10321 (DE85000141), U. S. Dept. of Energy, 107 (1985).Google Scholar
  17. 17.
    V. N. Tsvetkov, P. N. Lavrenko, S. V. Bushin, Russian Chemical Reviews 51, 975 (1982).CrossRefGoogle Scholar
  18. 18.
    M. E. McDonnell, A. M. Jamieson, Biopolymers 15, 1283 (1976).CrossRefGoogle Scholar
  19. 19.
    A. M. Jamieson, J. G. Southwick, J. Blackwell, J. Poly. Sci. B 20, 1513 (1982).Google Scholar
  20. 20.
    G. Muller, Polymer Bulletin 11, 391 (1984).CrossRefGoogle Scholar
  21. 21.
    A. Puckett, Ph.D. Dissertation, “A New Look at the Mandelkern—Flory Relationship: Determination of the Molecular Weight of Water Soluble Polymers,” University of Southern Mississippi (1986).Google Scholar
  22. 22.
    J. S. Linder, Ph.D. Dissertation, “Solution Properties of Water Soluble Macromolecules for Enhanced Oil Recovery Applications,” Mississippi State University (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • R. D. Hester
    • 1
  • A. D. Puckett
    • 1
  1. 1.Department of Polymer ScienceUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations