Laser Beam Scattering by Individual Spherical Particles: Numerical Results and Application to Optical Sizing

  • Bruno Maheu
  • Gérard Gréhan
  • Gérard Gouesbet

Abstract

Optical sizing measurements and, more generally, optical diagnostics require some good knowledge of light-matter interaction. In our laboratory, we are working on both the theory and the applications of light scattering. Another paper presented in this symposium1 is devoted to the recent developments of the theory of beam scattering by spherical, isotropic and homogeneous particles. This theory is called Generalized Lorenz-Mie Theory (GLMT).

Keywords

Laser Beam Gaussian Beam Localize Approximation Beam Waist Diffraction Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Gouesbet, B. Maheu and G. Gréhan, “Scattering of a Gaussian beam by a sphere using a Bromwich formulation: case of an arbitrary location”, Symposium on Optical Particle Sizing: Theory and Practice, Rouen, France, 12–15 May 1987.Google Scholar
  2. 2.
    G. Mie, “Beiträge zur Optik Trüber Medien, speziell Kolloidaler Metallösungen”, Ann. der Phys., 25, 377–452 (1908).MATHCrossRefGoogle Scholar
  3. 3.
    G. Gréhan, “Nouveaux progrès en théorie de Lorenz-Mie. Application à la mesure de diamètres de particules dans des écoulements”, Thèse, Rouen (1980).Google Scholar
  4. 4.
    G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie”, J. Opt., 13, 2, 97–103 (1982).CrossRefGoogle Scholar
  5. 5.
    G. Gouesbet, G. Gréhan and B. Maheu, “Scattering of a Gaussian Beam by a Mie Scatter Center Using a Bromwich Formalism”, J. Opt., 16, 2, 83–93 (1985).CrossRefGoogle Scholar
  6. 6.
    G. Gouesbet, B. Maheu and G. Gréhan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center”, J. Opt., 16, 5, 239–247 (1985).CrossRefGoogle Scholar
  7. 7.
    B. Maheu, G. Gréhan and G. Gouesbet, “Diffusion de la lumière par une sphère dans le cas d’un faisceau d’extension finie: 1re partie. Théorie de Lorenz-Mie Généralisée: les coefficients get leur calcul numérique”, Congrès du GAMS, Paris, Nov. 1986.Google Scholar
  8. 8.
    G. Gréhan, B. Maheu and G. Gouesbet, “Localized Approximation to the Generalized Lorenz-Mie Theory and its Application to Optical Sizing”, ICALEO’86, Arlington, VA, Nov. (1986).Google Scholar
  9. 9.
    M. Lax, W.H. Louisell and W.B. Mc Knight, “From Maxwell to Paraxial Wave Optics”, Phys. Rev. A, 11, 4, 1365–1370 (1975).CrossRefGoogle Scholar
  10. 10.
    L.W. Davis, “Theory of Electromagnetic Beams”, Phys. Rev. A, 19, 3, 1177-1179 (1979).Google Scholar
  11. 11.
    H.W. Kogelnik and T. Li, “Laser Beams and Resonators”, Appl. Opt., 5, 1550–1566 (1966).CrossRefGoogle Scholar
  12. 12.
    G.P. Agrawal and D.N. Pattanayak, “Gaussian Beam Propagation beyond the Paraxial Approximation”, J. Opt. Soc. Am., 69, 4, 575–578 (1979).CrossRefGoogle Scholar
  13. 13.
    M. Couture and P.A. Belanger, “From Gaussian Beam to Complex-Source-Point Spherical Wave”, Phys. Rev. A, 24, 1, 355–359 (1981).CrossRefGoogle Scholar
  14. 14.
    T. Takenaka, M. Yokota and O. Fukumitsu, “Propagation of Light Beams beyond the Paraxial Approximation”, J. Opt. Soc. Am. A, 2, 6, 826–829 (1985).CrossRefGoogle Scholar
  15. 15.
    M. Kerker, “The Scattering of Light and Other Electromagnetic Radiations”, Academic Press, New-York and London (1969).Google Scholar
  16. 16.
    G. Gréhan, B. Maheu and G. Gouesbet, “Scattering of Laser Beams by Mie Scatter Centers: Numerical Results Using a Localized Approximation”, Appl. Opt., 25, 19, 3539–3548 (1986).CrossRefGoogle Scholar
  17. 17.
    B. Maheu, G. Gréhan and G. Gouesbet, “Generalized Lorenz-Mie Theory: First Exact Values and Comparisons with the Localized Approximation”, Appl. Opt., 26, 1, 23–25 (1987).CrossRefGoogle Scholar
  18. 18.
    G. Gréhan, G. Gouesbet and C. Rabasse, “The Computer Program Supermidi for Lorenz-Mie Theory and the Research of One-to-one Relationships for Particle Sizing”, Symposium on Long Range and Short Range Optical Velocity Measurements, Institut Franco-allemand de St Louis, 15-18 Sept., Proceedings, XVI 1-XVI 10 (1980).Google Scholar
  19. 19.
    H.C. Van de Hulst, “Light Scattering by Small Particles”, J. Wiley and Sons, New-York (1957).Google Scholar
  20. 20.
    A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure”, Physical Review Letters, 24, 4, 156–159 (1970).CrossRefGoogle Scholar
  21. 21.
    G. Roosen, “La Lévitation Optique de Sphère”, Journal canadien de Physique, 57, 9, 1260–1279 (1979).CrossRefGoogle Scholar
  22. 22.
    G. Gréhan and G. Gouesbet, “Optical Lévitation of a Single Particle to Study the Theory of Quasi-Elastic Scattering of Light”, Applied Optics, 19, 15, 2485–2487 (1980).CrossRefGoogle Scholar
  23. 23.
    F. Slimani, G. Gréhan, G. Gouesbet and D. Allano, “Near-Field Lorenz-Mie Theory and its Applications to Microholography”, Applied Optics, 23, 22, 4140–4148 (1984).CrossRefGoogle Scholar
  24. 24.
    P. Hamelin, “Application de la Diffusion Lumineuse à la Métrologie des Particules en Ecoulement Diphasique Dispersé”, Thèse de l’Institut National Polytechnique de Toulouse (1986).Google Scholar
  25. 25.
    J.P. Chevaillier, J. Fabre and P. Hamelin, “Forward Scattered Light Intensities by a Sphere Located anywhere in a Gaussian Beam”, Applied Optics, 25, 7, 1222–1225 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Bruno Maheu
    • 1
  • Gérard Gréhan
    • 1
  • Gérard Gouesbet
    • 1
  1. 1.Laboratoire d’Energétique des Systèmes et ProcédésUA CNRS 230 — INSA de Rouen — BP 08Mont-Saint-AignanFrance

Personalised recommendations