Small Angle Light Scattering Patterns from Micrometer- Sized Spheroids

  • Jean-Claude Ravey


The scattering intensity functions i1 (ϑ) depending of one scattering angle ϑ do reflect the peculiar optical, morphological and orientational properties of the scatterer. This is particularly true for larger scatterer sizes (e.g. in the micrometer size range), where these angular intensity functions exhibit a rather complex succession of extrema of various amplitude at larger and larger ϑ.


Incident Beam Scattering Pattern Relative Refractive Index Fraunhofer Diffraction Revolution Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    — Dandliker, W.B., J. Amer. Chem. Soc. 72, 5110 (1950)CrossRefGoogle Scholar
  2. 2.
    — Nakagaki, M., and Heller, W., J. Chem.Phys. 32, 835 (1960)CrossRefGoogle Scholar
  3. 3.
    — Maron, S.H., Pierce, E., and Elder, M.E., J. Colloid Sci., 18, 391 (1963)CrossRefGoogle Scholar
  4. 4.
    — Maron, S.H., and Elder, M.E., J. Colloid Sci., 18, 107 (1963)CrossRefGoogle Scholar
  5. 5.
    Kerker, M., Farone, W.A., Smith, L.B., and Matijevic, E., J. Colloid Sci., 19, 193 (1964)CrossRefGoogle Scholar
  6. 6.
    Heller, W., and Nakagaki, N., J.Chem.Phys., 64, 4912 (1976)CrossRefGoogle Scholar
  7. 7.
    Bessis, M., and Mohandas, N., Blood Cells, 1, 307 (1975)Google Scholar
  8. 8.
    Plasek, J., and Marik, T., Appl. Opt., 21, 4335 (1982)CrossRefGoogle Scholar
  9. 9.
    Guillot, M., Ravey, J.C., Guerlet, B., Mazeron, P., and Stoltz, J.F., J. Biophys. Med. Nucl., 4, 225, (1980)Google Scholar
  10. 10.
    Ravey, J.C., and Mazeron, P., Biorheology, Suppl. I, 287 (1984)Google Scholar
  11. 11.
    Waterman, P.C., Phys. Rev., D3, 825, (1971)Google Scholar
  12. 12.
    Barber, P., and Yeh, C., Appl.Opt., 14, 2864 (1975)CrossRefGoogle Scholar
  13. 13.
    Asano, S., and Yamamoto, G., Appl.Opt., 14, 29, (1975)Google Scholar
  14. 14.
    Asano, S., and Sato, M., Appl.Opt., 19, 962 (1980)CrossRefGoogle Scholar
  15. 15.
    Hodkinson, J.R., and Greenleaves, I., J.Opt.Soc.Amer., 53, 577 (1963)CrossRefGoogle Scholar
  16. 16.
    Ravey, J.C., and Mazeron, P., J. Optics, 13, 273 (1982)CrossRefGoogle Scholar
  17. 17.
    Ravey, J.C, and Mazeron, P., J. Optics, 14, 29 (1983)CrossRefGoogle Scholar
  18. 18.
    Ravey, J.C., J. Colloid Interface Sci., 105, 435 (1985)CrossRefGoogle Scholar
  19. 19.
    Stratton, J.A., Electromagnetic theory, McGraw Hill, New york, 1941zbMATHGoogle Scholar
  20. 20.
    Silver, S., Microwave antenna theory and design, McGraw Hill, New York, 1947Google Scholar
  21. 21.
    Beckmann, P., The depolarization of electromagnetic waves, The Golem Press, Boulder (Colorado), 1968.Google Scholar
  22. 22.
    Bell, E.E., Handbuch der Physik, (Bd XXV, 1–58), Springer Verlag, Berlin, 1967Google Scholar
  23. 23.
    Van der Hulst, H.C, Light scattering by small particles, Wiley, New york, 1957Google Scholar
  24. 24.
    Patitsas, A.J., J. Colloid Interface Sci., 46, 266 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jean-Claude Ravey
    • 1
  1. 1.Laboratoire de Physico- Chimie des ColloidesLESOC — UA CNRS 406- Université Nancy IVandoeuvre lès Nancy CedexFrance

Personalised recommendations