An application of an Optical Particle Sizing Method to the Study of the Evaporation of Droplets Diffusing in a Turbulent Flow

  • H. Burnage
  • S. J. Yoon


The physico-chemical process of evaporation of a cloud of droplets moving in a turbulent gas flow is a very complex phenomenon of major importance for many applications. Its difficulty stems from the large number of interacting parameters on which it depends. When a droplet is in motion, the flow around it modifies the boundary condition for momentum, heat and mass transfert; the latter is directly related to the velocity of the particle and to the partial pressure of vapour in the neighbouring fluid. If these are sometimes known in the case of a single drop displacing in a given environment, they are not when it follows a random trajectory inside of a cloud of similar particles. It is then necessary to elaborate mathematical models that represent the physical phenomenon considered as a whole.


Drop Size Centrifugal Compressor Glass Ball Neighbouring Fluid Glass Spherical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allano D., Gouesbet G., Grehan G., Lisiecki D. Droplets sizing using a Top-Hot laser beam technique J.Phys. O: Appl. Physics 17 pp 43–58, (1984)CrossRefGoogle Scholar
  2. 2.
    Bachalo W.W., Houser M.J. Spray drop size and velocity measurements using the phase/doppler particle analyser Proc. of ICLASS-85 London (1985)Google Scholar
  3. 3.
    Bauckhage H. Simultaneous measurement of velocity and size drops in free-flow fluid sprays Proc. of ICLASS-85 London (1985)Google Scholar
  4. 4.
    Burnage H., Gaic P., Lourme D., Size-velocity correlations measurements of large drops in a turbulent air flow. Proc. of ICLASS-85 London (1985)Google Scholar
  5. 5.
    Chigier N.A., Instrumentation techniques for studying heterogeneous combustion Proc. Energy Combustion Science 3, p.175 (1977)CrossRefGoogle Scholar
  6. 6.
    Durst F., Scattering phenomena and their application in optical anemometry Z.A.M.P. Vol.14, no 4, (1973)Google Scholar
  7. 7.
    Eckel A., Contribution au développement de méthodes de mesure simultanée des dimensions, des vitesses et des concentrations de particules dans les écoulements diphasiques. Thèse de Docteur-Ingènieur, Université Louis Pasteur de Strasbourg (1983)Google Scholar
  8. 8.
    Eckel A., Buriage H., Lourme D., Sur une méthode de mesure locale de la répartition statistique des diamètres de particules sphèriques diffusant dans un fluide, La Recherche Aérospatiale, p.345, (1983)Google Scholar
  9. 9.
    Ereaut P.R., Ungut A., Yule A.J., Chigier N.A., Measurement of drop size and velocity in vaporizing sprays, Proc of ICLASS-82, Madison Wisconsin (1982)Google Scholar
  10. 10.
    Farmer V.M., Measurement of particle size, number density and velocity using a laser interferometer, Appl. Optics Vol 11, p. 2603 (1972)CrossRefGoogle Scholar
  11. 11.
    Farmer V.M., Observation of large particles with a laser interferometer. Appl. Optics Vol 13, p. 610 (1974)CrossRefGoogle Scholar
  12. 12.
    Farmer V.M., Visibility of large spheres observed with a laser velocimeter: a simple model. Appl. Optics Vol 19, p. 3660 (1980)CrossRefGoogle Scholar
  13. 13.
    Gaic P, Developpement et mise au point d’un système de mesures couplée des tailles et vitesses des particules au sein d’un écoulement diphasique disperse Thèse de Doctorat en Mécanique Université de Strasbourg I (1986)Google Scholar
  14. 14.
    Gaic P., Burnage H., Yoon S.J., Lourme D. Distribution and mean concentration, dropsize and velocity, and size-velocity correlation in the spray of an air-assist nozzle. Int. J. Turbo and Jet Engines (to be published 1987)Google Scholar
  15. 15.
    Holve D., Self S., Optical particle sizing for “in situ” measurements, Appl. Optics, Vol 18, No 10 (1979)Google Scholar
  16. 16.
    Holve D., “In situ” optical particle sizing technique. J. of Energy Vol 4, p.176 (1960)CrossRefGoogle Scholar
  17. 17.
    Rosin P., Rammler E. The lawws governing the fineness of powdered coal. J. of the Institute of Fuels, Vol.7 No 31 (1933)Google Scholar
  18. 18.
    Yoon S.J., Contribution de la diffusion avec transfert de masse de gouttelettes dans un écoulement gazeux turbulent. Thèse de Doctorat en Mécanique Université de Strasbourg I, (1986)Google Scholar
  19. 19.
    Yule A.J., Chigier N., Atakan S., Ungut A. Particle sizing and velocity measurement by laser anemometry, J. Energy 1,220 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. Burnage
    • 1
  • S. J. Yoon
    • 1
  1. 1.Institut de Mécanique des Fluides de StrasbourgU.A. C.N.R.S. 854StrasbourgFrance

Personalised recommendations