Advertisement

Scattering of a Gaussian Beam by a Sphere Using a Bromwich Formulation : Case of an Arbitrary Location

  • Gérard Gouesbet
  • Bruno Maheu
  • Gérard Gréhan

Abstract

The present paper is devoted to the generalization1 of the Mie scattering theory for a sphere illuminated by a plane wave to the case when the scatter center is illuminated by a Gaussian beam. Such a fundamental theory may lead, in other steps, to important applications in optical sizing, by enabling the researchers to design rigorous approaches to the principles of a few optical sizing methods (the visibility or the phase Doppler techniques, for instance).

Keywords

Phase Angle Gaussian Beam Scattered Intensity Transversal Electric Scatter Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mie, “Beiträge zur Optik Trüber Medien, speziell Kolloidaler Metalösungen”, Ann. der Phys., 25, 377–452 (1908).zbMATHCrossRefGoogle Scholar
  2. 2.
    W.G. Tarn and R. Corriveau, “Scattering of Electromagnetic beams by Spherical Objects”, J. Opt. Soc. Am., 68, 6, 763–767 (1978).CrossRefGoogle Scholar
  3. 3.
    N. Morita, T. Takenaka, T. Yamasaki and Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object”, IEEE Trans. Antennas Propag., AP 16, 6, 724–727 (1968).CrossRefGoogle Scholar
  4. 4.
    W.C. Tsai and R.J. Pogorzelski, “Eigenf unction Solution of the Scattering of Beam Radiation Fields by Spherical Objects”, J. Opt. Soc. Am., 65, 12, 1457–1463 (1975).CrossRefGoogle Scholar
  5. 5.
    J.S. Kim and S.S. Lee, “Scattering of Laser Beams and the Optical Potential Well for a Homogeneous Sphere”, J. Opt. Soc. Am., 73, 3, 303–312 (1983).CrossRefGoogle Scholar
  6. 6.
    G. Gréhan, “Nouveaux progrès en théorie de Lorenz-Mie. Application à la mesure de diamètres de particules dans des écoulements”, Thèse, Rouen (1980).Google Scholar
  7. 7.
    G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie”, J. Opt., 13, 2, 97–103 (1982).CrossRefGoogle Scholar
  8. 8.
    G. Gouesbet, G. Gréhan and B. Maheu, “Scattering of a Gaussian Beam by a Mie Scatter Center Using a Bromwich Formalism”, J. Opt., 16, 2, 83–93 (1985).CrossRefGoogle Scholar
  9. 9.
    G. Gouesbet, B. Maheu and G. Gréhan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center”, J. Opt., 16, 5, 239–247 (1985).CrossRefGoogle Scholar
  10. 10.
    G. Gréhan, B. Maheu and G. Gouesbet, “Scattering of Laser Beams by Mie Scatter Centers: Numerical Results Using a Localized Approximation”, Appl. Opt., 25, 19, 3539–3548 (1986).CrossRefGoogle Scholar
  11. 11.
    B. Maheu, G. Gréhan and G. Gouesbet, “Generalized Lorenz-Mie Theory: First Exact Values and Comparisons with the Localized Approximation”, Appl. Opt., 26, 1, 23–25 (1987).CrossRefGoogle Scholar
  12. 12.
    B. Maheu, G. Gréhan and G. Gouesbet, “Theory of laser beam scattering by individual spherical particles: numerical results and applications to optical sizing”, symposium on Optical Sizing, 12–15 May 1987, Rouen, France (1987).Google Scholar
  13. 13.
    T.J. Bromwich, “Electromagnetic Waves”, Phil. Mag., S.6., 38, 223, 143–164 (1919).Google Scholar
  14. 14.
    P. Poincelot, Précis d’électromagnétisme théorique, Masson, Paris (1963).Google Scholar
  15. 15.
    M. Lax, W.H. Louisell and W.B. McKnight, “From Maxwell to Paraxial Wave Optics”, Phys. Rev. A, 11, 4, 1365–1370 (1975).CrossRefGoogle Scholar
  16. 16.
    L.W. Davis, “Theory of Electromagnetic Beams”, Phys. Rev. A, 19, 3, 1177–1179 (1979).CrossRefGoogle Scholar
  17. 17.
    F. Slimani, G. Gréhan, G. Gouesbet and D. Allano, “Near-field Lorenz-Mie Theory and its application to microholography”, Appl. Opt., 23, 22, 4140–4148 (1984).CrossRefGoogle Scholar
  18. 18.
    M. Kerker, “The Scattering of Light and Other Electromagnetic Radiations”, Academic Press, New-York and London (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Gérard Gouesbet
    • 1
  • Bruno Maheu
    • 1
  • Gérard Gréhan
    • 1
  1. 1.Laboratoire d’Energétique des Systèmes et ProcédésUA CNRS 230 — INSA de Rouen — BP 08Mont-Saint-AignanFrance

Personalised recommendations