Skip to main content

Light Scattering Theory: a Progress Report

  • Chapter

Abstract

Having reached an age when egoism overwhelmes common sense, I have decided to survey the general direction of recent research on light scattering by particles rather than to lecture on some of my research. And so I must warn at the outset that the subject in hand is mainly bibliographic, and to a lesser extent historical and philosophical. It should establish my credentials as an elder if not as a statesman.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Boundary Value Solutions A. Historical

  1. Survey of some early studies of the scattering of plane waves by a sphere, Nelson A. Logan, Proceedings of the IEEE, 773-785, August 1965.

    Google Scholar 

B. Spheres

  1. New and alternate solutions.

    Google Scholar 

  2. Light scattering by an optically active sphere, Craig F. Bohren, Chem. Phys. Lett. 29, 458–462 (1974).

    Article  Google Scholar 

  3. Scattering and absorption of electromagnetic waves by a gyrotropic sphere, G.W. Ford and S.A. Werner, Phys. Rev. B 18, 6752–6769 (1978).

    Article  Google Scholar 

  4. Optical properties of small metal spheres, R. Ruppin, Phys. Rev. B 11, 2871–2876 (1975).

    Article  Google Scholar 

  5. Optical properties of spatially dispersive dielectric spheres, R. Ruppin, J. Opt. Soc. Am. 71 755–758 (1981).

    Article  Google Scholar 

  6. Polarizability of a small sphere including nonlocal effects, Basab B. Dasgupta and Ronald Fuchs, Phys. Rev. B 24, 554–561 (1981).

    Google Scholar 

  7. Scattering by a rotating dielectric sphere, Daniel De Zutter, IEEE Transactions on Antennas and Propagation, AP-28, 643-651 (1980).

    Google Scholar 

  8. Relativistic scattering of electromagnetic waves by moving obstacles, Victor Twersky, J. of Mathematical Phys. 12, 2328–2341 (1971).

    Google Scholar 

  9. Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translational motion, B.L. Michielsen, G.C. Herman, A.T. de Hoop and D. De Zutter, J. Math. Phys. 22, 2716–2722 (1981).

    Article  Google Scholar 

  10. Model for Raman and fluorescent scattering by molecules embedded in small particles, H. Chew, P.J. McNulty and M. Kerker, Phys. Rev. A 13, 396–404 (1976).

    Article  Google Scholar 

  11. Fluorescent and Raman scattering by molecules embedded in small particles: Magnetic dipole transitions, H. Chew, Phys. Rev. A 19, 2137–2138 (1979).

    Article  Google Scholar 

  12. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata, Milton Kerker, Dau-Sing Wang and H. Chew, Appl. Opt. 19, 4159–4174 (1980).

    Article  Google Scholar 

  13. Electromagnetic aspects of the enhanced Raman scattering by a molecule adsorbed on a polarizable sphere, K. Ohtaka and M. Inoue, J. Phys. C 15, 6463–6480 (1982).

    Article  Google Scholar 

  14. Theory of second harmonic generation by small metal spheres, Xias Ming Hua and Joel L. Gersten, Phys. Rev. B 33, 3756–3764 (1986).

    Article  Google Scholar 

  15. Scattering of electromagnetic waves from two concentric spheres, Arthur L. Aden and Milton Kerker, J. of Appl. Phys. 22, 1242–1246 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  16. Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für probleme der interstellaren materie und des atmospharischen aerosols, A. Guttler, Annalen der Physik. 6, 65–78 (1952).

    Article  MathSciNet  Google Scholar 

  17. Scattering from an eccentrically stratified dielectric sphere, J. G. Fikioris and N.K. Uzunoglu, J. Opt. Soc. Am. 69, 1359–1366 (1979).

    Article  Google Scholar 

  18. Electromagnetic scattering from a radially inhomogeneous spheres, James R. Wait, Appl. Sci. Res. 10, 441–450 (1963).

    Article  Google Scholar 

  19. Scattering coefficients for a multilayered sphere: analytic expressions and algorithms, Ramesh Bhandari, Appl. Opt. 24, 1060–1967 (1985).

    Article  Google Scholar 

  20. Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects, Philip J. Wyatt, Phys. Rev. 127, 1837–1843 (1962). Erratum, ibid, 134 (1964).

    Article  Google Scholar 

  21. Scattering of electromagnetic waves from two concentric spheres, when outer shell has a variable refractive index, S. Levine and M. Kerker, I.C.E.S. 37-46 (1963).

    Google Scholar 

Computations

  1. Scattering of electromagnetic radiation by a large, absorbing sphere, J.V. Dave, IBM J. Res. Develop. 302–313 (1969).

    Google Scholar 

  2. Improved Mie scattering algorithms, W.J. Wiscombe, Appl. Opt. 19, 1505–1509 (1980).

    Article  Google Scholar 

  3. Note on the recurrence between Mie’s coefficients, B. Verner, J. Opt. Soc. of Am. 66, 1424–1425 (1976).

    Article  Google Scholar 

  4. Recurrence relations for Mie scattering coefficients, C.F. Bohren, J. Opt. Soc. of Am. A 4, 612 (1987).

    Article  Google Scholar 

  5. Relation between contiguous Mie coefficients for perfectly conducting spheres, H. Chew, Phys. Lett. A 115, 191–192 (1986).

    Article  Google Scholar 

Optical Resonances

  1. Etude de la structure detaillee des courses de diffusion des ondes electromagnetiques par les spheres dielectriques, Jean Mevel, Journal de Physique et le Radium 19, 630–636 (1958).

    Article  Google Scholar 

  2. Internal field resonance structure: Implications for optical absorption and scattering by microscopic particles, Gregory J. Rosasco and Herbert S. Bennett, J. Opt. Soc. Am. 68, 1242–1250 (1978).

    Article  Google Scholar 

  3. Optical modes of vibration in an ionic crystal sphere, Ronald Fuchs and K.L. Kliewer, J. of the Opt. Soc. of Am. 58, 319–330 (1968).

    Article  Google Scholar 

  4. Observation of optical resonances of dielectric spheres by light scattering, A. Ashkin and J.M. Dziedzic, Appl. Opt. 20, 1803–1814 (1981).

    Article  Google Scholar 

  5. Optical levitation and partial-wave resonances, P. Chylek, J. Kiehl and M.K.W. Ko, Phys. Rev. A 18, 2229–2233 (1978).

    Article  Google Scholar 

Shaped beams

  1. Electromagnetic scattering by a dielectric sphere in a diverging radiation field, H. Chew, M. Kerker and D.D. Cooke, Phys. Rev. A 16, 320–323 (1977).

    Article  Google Scholar 

  2. Light scattering in converging beams, Herman Chew, Milton Kerker and Derry D. Cooke, Opt. Lett. 1, 138–140 (1977).

    Article  Google Scholar 

  3. Elastic scattering of evanescent electromagnetic waves, Herman Chew, Dau-Sing Wang and Milton Kerker, Appl. Opt. 18, 2679–2687 (1979).

    Article  Google Scholar 

  4. Scattering of electromagnetic beams by spherical objects, W.G. Tarn and Robert Corriveau, J. Opt. Soc. Am. 68, 763–767 (1978).

    Article  Google Scholar 

  5. The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center, G. Gouesbet, B. Maheu and G. Grehan, J. Optics 16, 239–247 (1985).

    Article  Google Scholar 

  6. Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism, G. Gouesbet. G. Grehan and B. Maheu, J. Optics 16, 83–93 (1985).

    Article  Google Scholar 

Interpretations and applications

  1. Light scattering by spherical particles, David Sinclair, J. of the Opt. Soc. of Am. 37, 475–480 (1947).

    Article  Google Scholar 

  2. The scattering cross section of spheres for electromagnetic waves, L. Brillouin, J. of Appl. Phys. 20, 1110–1125 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  3. Efficiency factors in Mie scattering, H.M. Nussenzveig and W.J. Wiscombe, Phys. Rev. Lett. 45, 1490–1494 (1980).

    Article  Google Scholar 

  4. How can a particle absorb more than the light incident on it? Craig F. Bohren, Am. J. Phys. 51, 323–327 (1983).

    Article  Google Scholar 

  5. Extinction by a spherical particle in an absorbing medium, Craig F. Bohren and Daya P. Gilra, J. Colloid and Interf. Sci. 72, 215–221 (1979).

    Article  Google Scholar 

  6. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave, Philip L. Marston and James H. Crichton, Phys. Rev. A 30, 2508–2516 (1984).

    Article  Google Scholar 

  7. Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam, Soo Chang and Sand Soo Lee, J. Opt. Soc. Am. B 2, 1853–1860 (1985).

    Article  Google Scholar 

  8. Theory of the photophoretic motion of the large-size volatile aerosol particle, Yu. I. Yalamov, V.B. Kutukov and E.R. Shchukin, J. Colloid Interface Sci. 57, 564–571 (1976).

    Article  Google Scholar 

  9. Comprehensive model of the photophoretic force on a spherical micro-particle, A.B. Pluchino and S. Arnold, Opt. Lett. 10, 261–263 (1985).

    Article  Google Scholar 

  10. Monte Carlo simulation of photophoresis of submicron aerosol particles, Marek Sitarski and Milton Kerker, J. of the Atm. Sciences 41, 2250–2262 (1984).

    Article  Google Scholar 

  11. Theorem on electromagnetic backscatter, R.J. Wagner and P.J. Lynch, Phys. Rev. 131, 21–23 (1963).

    Article  MathSciNet  Google Scholar 

  12. Electromagnetic scattering by magnetic spheres, M. Kerker, D.-S. Wang and C.L. Giles, J. Opt. Soc. Am. 73, 765–767 (1983).

    Article  Google Scholar 

  13. Invisible bodies, Milton Kerker, J. of the Opt. Soc. of Am. 65, 376–379 (1975).

    Article  Google Scholar 

  14. Electromagnetic scattering from active objects: invisible scatterers, N.G. Alexopoulos and N.K. Uzunoglu, Appl. Opt. 17, 235–239 (1978).

    Article  Google Scholar 

  15. Electromagnetic scattering from active objects, Milton Kerker, Appl. Opt. 17, 3337–3339 (1978).

    Article  Google Scholar 

  16. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances, H.-M. Tzeng, K.F. Wall, M.B. Long and R.K. Chang, Opt. Lett. 9, 499–501 (1984).

    Article  Google Scholar 

  17. Coherent anti-Stokes Raman scattering by droplets in the Mie size range, John Cooney and Abraham Cross, Opt. Lett. 7, 218–220 (1982).

    Article  Google Scholar 

  18. Coherent Raman mixing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets, Shi-Xiong Qian, Judith B. Snow, and Richard K. Chang, Opt. Lett. 10, 499–501 (1985).

    Article  Google Scholar 

  19. Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres, H. Chew, D.-S. Wang and M. Kerker, J. of Opt. Soc. of Am. 1, 56–66 (1984).

    Article  Google Scholar 

C. Cylinders

  1. Scattering of a plane wave from a circular dielectric cylinder at oblique incidence, James R. Wait, Canadian J. of Phys. 33, 189–195 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  2. The long wavelength limit in scattering from a dielectric cylinder at oblique incidence, James R. Wait, Canadian J. of Phys. 43, 2212–2215 (1965).

    Article  Google Scholar 

  3. Light scattering from long thin glass cylinders at oblique incidence, D.D. Cooke and M. Kerker, J. Opt. Soc. Am. 59, 43–48 (1969).

    Article  Google Scholar 

  4. Some boundary value problems involving plasma media, James R. Wait, J. of Res. of the Nat. Bureau of Standards 65B, 137–150 (1961).

    MathSciNet  Google Scholar 

  5. Interaction between an obliquely incident plane electromagnetic wave and an electron beam in the presence of a static magnetic field of arbitrary strength, K.H.B. Wilhelmsson, J. of Res. of the Nat. Bureau of Standards 66D, 439–451 (1962).

    Google Scholar 

  6. Scattering of plane waves from an infinitely long cylinder of anisotropic materials at oblique incidence with an application to an electronic scanning antenna, S.N. Samaddar, Appl. Sci. Res. 10, 385–411 (1963).

    Article  Google Scholar 

  7. Scattering of obliquely incident waves by inhomogeneous fibers, C. Yeh and P.K.C. Wang, J. Appl. Phys. 43, 3999–4006 (1972).

    Article  Google Scholar 

  8. Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles, J.F. Owen, R. K. Chang and P.W. Barber, Aerosol Sci. and Tech. 1, 293–302 (1982).

    Article  Google Scholar 

  9. Resonances in electromagnetic scattering by objects with negative absorption, M. Kerker, Appl. Opt. 18, 1184–1189 (1979).

    Google Scholar 

D. Spheroids

  1. Attenuation of electromagnetic wave due to rain with distorted raindrops, J. Oguchi, J. of Radio Res. Labs. 7, 467–485 (1960).

    Google Scholar 

  2. Scattering of a plane electromagnetic wave by axisymmetric raindrops, J.A. Morrison and M.-J. Cross, Bell system Tech. J. 53, 955–978, 1008-1019 (1974).

    Google Scholar 

  3. Light scattering by a spheroidal particle, S. Asano and G. Yamamoto, Appl. Opt. 14, 29–48 (1975). Errata, ibid. 15, 2028 (1976).

    Google Scholar 

  4. Light scattering by randomly oriented spheroidal particles, S. Asano and M. Sato, Appl. Opt. 19, 962–974 (1980).

    Article  Google Scholar 

E. Clusters of Spheres

  1. Multiple scattering of EM waves by spheres, Part I-Multipole expansion and ray-optical solutions, John H. Bruning and Yuen T. Lo, IEEE Transactions on Antennas and Propagation AP-19, 378-390 (1971).

    Google Scholar 

  2. Electromagnetic scattering from two dielectric spheres: Comparison between theory and experiment, George W. Kattawar and Cleon E. Dean, Opt. Lett. 8, 48–50 (1983).

    Article  Google Scholar 

  3. Electromagnetic scattering by a cluster of spheres, F. Borghese, P. Denti, G. Toscano and O.I. Sindoni, Appl. Opt. 18, 116–120 (1979).

    Article  Google Scholar 

  4. Use of group theory for the description of electromagnetic scattering from molecular systems, F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, J. Opt. Soc. Am. A 1, 183–188 (1984).

    Article  MathSciNet  Google Scholar 

  5. Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects, F. Borghese, P. Denti, R. Saija and G. Toscano, I1 Nuovo Cimento 6, 545–557 (1985).

    Article  Google Scholar 

F. Arbitrary Shape

  1. An exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. I. Case of cylindrical symmetry, Victorr A. Erma, The Phys. Rev. 173, 1243–1257 (1968).

    Article  MathSciNet  Google Scholar 

  2. Exact solution for the scattering of electromagnetic waves fron conductors of arbitrary shape. II. General case, Victorr A. Erma, Phys. Rev. 176, 1544–1553 (1968).

    Article  MathSciNet  Google Scholar 

  3. Exact solution for the scattering of electromagnetic waves from bodies of arbitrary shape. III. Obstacles with arbitrary electromagnetic properties, Victorr A. Erma, Phys. Rev. 179, 1238–1246 (1969).

    Article  MathSciNet  Google Scholar 

Integral Equation Solutions A. General

  1. Tensor scattering matrix for the electromagnetic field, David S. Saxon, Phys. Rev. 100, 1771–1775 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  2. On the integral equations for electromagnetic scattering, Staffan Strom, Am. J. of Phys. 43, 1060–1069 (1975).

    Article  Google Scholar 

B. Extended Boundary Condition Method

  1. Matrix formulation of electromagnetic scattering, P.C. Waterman, Proceedings of the IEEE, 805-812, August 1965.

    Google Scholar 

  2. Symmetry, unitarity, and geometry in electromagnetic scattering, P. C. Waterman, Phys. Rev. D 3, 825–839 (1971).

    Article  Google Scholar 

  3. T-matrix formulation of electromagnetic scattering from multilayered scatterers, Bo Peterson and Staffan Strom, Phys. Rev. D 10, 2670–2684 (1974).

    Article  Google Scholar 

  4. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, P. Barber and C. Yeh, Appl. Opt. 14, 2864–2872 (1975).

    Article  Google Scholar 

  5. Scattering by inhomogeneous nonspherical objects, Dau-Sing Wang and Peter W. Barber, Appl. Opt. 18, 1190–1197 (1979).

    Article  Google Scholar 

  6. Raman and fluorescent scattering by molecules embedded in dielectric spheroids, Dau-Sing Wang, Milton Kerker and Herman W. Chew, Appl. Opt. 19, 2135–2328 (1980).

    Google Scholar 

  7. Scattering of sharply focused beams by arbitrarily shaped dielectric particles: An exact solution, C. Yeh, S. Colak and P. Barber, Appl. Opt. 21, 4426–4433 (1982).

    Article  Google Scholar 

  8. Matrix methods in potential theory and electromagnetic scattering, P.C. Waterman, J. Appl. Phys. 50, 4550–4566 (1979).

    Article  Google Scholar 

C. Iterative Procedures

  1. Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer)/wavelength, A.F. Stevenson, J. of Appl. Phys. 24, 1134–1142 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  2. Scattering and absorption of light by nonspherical dielectric grains, Edward M. Purcell and Carlton R. Pennypacker, The Astrophysical J. 186, 705–714 (1973).

    Article  Google Scholar 

  3. Variational principle for scattering of light by dielectric particles, Yuk L. Yung, Appl. Opt. 17, 3707–3709 (1978).

    Article  Google Scholar 

  4. Scattering from bodies of revolution, Mogens G. Andreasen, IEEE Trans. on Antennas and Propagation, AP-13, 303-310, March 1965. Erratum, ibid. AP-14, 659 (1966).

    Google Scholar 

  5. An integral equation solution to the scattering of electromagnetic radiation by dielectric spheroids and ellipsoids, A.R. Hold, N.K. Uzunoglu, B.G. Evans, IEEE Transactions on Antennas and Propagation, AP-26, 706-712, September 1978.

    Google Scholar 

  6. Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields, K. Ohtaka M. Inoue, Phys. Rev. B 25, 677–688 (1982).

    Article  Google Scholar 

  7. Surface enhanced Raman scattering by metal spheres. I. Cluster effect, Masahiro Inoue and Kazuo Ohtaka, J. of the Phys. Society of Japan 52, 3853–3864 (1983).

    Article  Google Scholar 

General

  1. On the attenuation of plane waves by obstacles of arbitrary size and form, H.C. van de Hulst, Physica XV. No. 8-9, 740-746 (1949).

    Google Scholar 

  2. Theory of light scattering and refractive index of solutions of large colloidal particles, B.H. Zimm and W.B. Dandliker, J. Phys. Chem. 58, 644 (1954).

    Article  Google Scholar 

  3. Sum rules for optical scattering amplitudes, Bruce H.J. McKellar, Michael A. Box and Craig F. Bohren, J. Opt. Soc. Am. 72, 535–538 (1982). Erratum.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kerker, M. (1988). Light Scattering Theory: a Progress Report. In: Gouesbet, G., Gréhan, G. (eds) Optical Particle Sizing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1983-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1983-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3208-2

  • Online ISBN: 978-1-4757-1983-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics