Light Scattering Theory: a Progress Report

  • Milton Kerker


Having reached an age when egoism overwhelmes common sense, I have decided to survey the general direction of recent research on light scattering by particles rather than to lecture on some of my research. And so I must warn at the outset that the subject in hand is mainly bibliographic, and to a lesser extent historical and philosophical. It should establish my credentials as an elder if not as a statesman.


Electromagnetic Wave Surface Enhance Raman Scattering Knudsen Number Scatter Cross Section Scattered Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Boundary Value Solutions A. Historical

  1. 1.
    Survey of some early studies of the scattering of plane waves by a sphere, Nelson A. Logan, Proceedings of the IEEE, 773-785, August 1965.Google Scholar

B. Spheres

  1. 1.
    New and alternate solutions.Google Scholar
  2. 2.
    Light scattering by an optically active sphere, Craig F. Bohren, Chem. Phys. Lett. 29, 458–462 (1974).CrossRefGoogle Scholar
  3. 3.
    Scattering and absorption of electromagnetic waves by a gyrotropic sphere, G.W. Ford and S.A. Werner, Phys. Rev. B 18, 6752–6769 (1978).CrossRefGoogle Scholar
  4. 4.
    Optical properties of small metal spheres, R. Ruppin, Phys. Rev. B 11, 2871–2876 (1975).CrossRefGoogle Scholar
  5. 5.
    Optical properties of spatially dispersive dielectric spheres, R. Ruppin, J. Opt. Soc. Am. 71 755–758 (1981).CrossRefGoogle Scholar
  6. 6.
    Polarizability of a small sphere including nonlocal effects, Basab B. Dasgupta and Ronald Fuchs, Phys. Rev. B 24, 554–561 (1981).Google Scholar
  7. 7.
    Scattering by a rotating dielectric sphere, Daniel De Zutter, IEEE Transactions on Antennas and Propagation, AP-28, 643-651 (1980).Google Scholar
  8. 8.
    Relativistic scattering of electromagnetic waves by moving obstacles, Victor Twersky, J. of Mathematical Phys. 12, 2328–2341 (1971).Google Scholar
  9. 9.
    Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translational motion, B.L. Michielsen, G.C. Herman, A.T. de Hoop and D. De Zutter, J. Math. Phys. 22, 2716–2722 (1981).CrossRefGoogle Scholar
  10. 10.
    Model for Raman and fluorescent scattering by molecules embedded in small particles, H. Chew, P.J. McNulty and M. Kerker, Phys. Rev. A 13, 396–404 (1976).CrossRefGoogle Scholar
  11. 11.
    Fluorescent and Raman scattering by molecules embedded in small particles: Magnetic dipole transitions, H. Chew, Phys. Rev. A 19, 2137–2138 (1979).CrossRefGoogle Scholar
  12. 12.
    Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata, Milton Kerker, Dau-Sing Wang and H. Chew, Appl. Opt. 19, 4159–4174 (1980).CrossRefGoogle Scholar
  13. 13.
    Electromagnetic aspects of the enhanced Raman scattering by a molecule adsorbed on a polarizable sphere, K. Ohtaka and M. Inoue, J. Phys. C 15, 6463–6480 (1982).CrossRefGoogle Scholar
  14. 14.
    Theory of second harmonic generation by small metal spheres, Xias Ming Hua and Joel L. Gersten, Phys. Rev. B 33, 3756–3764 (1986).CrossRefGoogle Scholar
  15. 15.
    Scattering of electromagnetic waves from two concentric spheres, Arthur L. Aden and Milton Kerker, J. of Appl. Phys. 22, 1242–1246 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Die Miesche Theorie der Beugung durch dielektrische Kugeln mit absorbierendem Kern und ihre Bedeutung für probleme der interstellaren materie und des atmospharischen aerosols, A. Guttler, Annalen der Physik. 6, 65–78 (1952).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Scattering from an eccentrically stratified dielectric sphere, J. G. Fikioris and N.K. Uzunoglu, J. Opt. Soc. Am. 69, 1359–1366 (1979).CrossRefGoogle Scholar
  18. 18.
    Electromagnetic scattering from a radially inhomogeneous spheres, James R. Wait, Appl. Sci. Res. 10, 441–450 (1963).CrossRefGoogle Scholar
  19. 19.
    Scattering coefficients for a multilayered sphere: analytic expressions and algorithms, Ramesh Bhandari, Appl. Opt. 24, 1060–1967 (1985).CrossRefGoogle Scholar
  20. 20.
    Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects, Philip J. Wyatt, Phys. Rev. 127, 1837–1843 (1962). Erratum, ibid, 134 (1964).CrossRefGoogle Scholar
  21. 21.
    Scattering of electromagnetic waves from two concentric spheres, when outer shell has a variable refractive index, S. Levine and M. Kerker, I.C.E.S. 37-46 (1963).Google Scholar


  1. 22.
    Scattering of electromagnetic radiation by a large, absorbing sphere, J.V. Dave, IBM J. Res. Develop. 302–313 (1969).Google Scholar
  2. 23.
    Improved Mie scattering algorithms, W.J. Wiscombe, Appl. Opt. 19, 1505–1509 (1980).CrossRefGoogle Scholar
  3. 24.
    Note on the recurrence between Mie’s coefficients, B. Verner, J. Opt. Soc. of Am. 66, 1424–1425 (1976).CrossRefGoogle Scholar
  4. 25.
    Recurrence relations for Mie scattering coefficients, C.F. Bohren, J. Opt. Soc. of Am. A 4, 612 (1987).CrossRefGoogle Scholar
  5. 26.
    Relation between contiguous Mie coefficients for perfectly conducting spheres, H. Chew, Phys. Lett. A 115, 191–192 (1986).CrossRefGoogle Scholar

Optical Resonances

  1. 27.
    Etude de la structure detaillee des courses de diffusion des ondes electromagnetiques par les spheres dielectriques, Jean Mevel, Journal de Physique et le Radium 19, 630–636 (1958).CrossRefGoogle Scholar
  2. 28.
    Internal field resonance structure: Implications for optical absorption and scattering by microscopic particles, Gregory J. Rosasco and Herbert S. Bennett, J. Opt. Soc. Am. 68, 1242–1250 (1978).CrossRefGoogle Scholar
  3. 29.
    Optical modes of vibration in an ionic crystal sphere, Ronald Fuchs and K.L. Kliewer, J. of the Opt. Soc. of Am. 58, 319–330 (1968).CrossRefGoogle Scholar
  4. 30.
    Observation of optical resonances of dielectric spheres by light scattering, A. Ashkin and J.M. Dziedzic, Appl. Opt. 20, 1803–1814 (1981).CrossRefGoogle Scholar
  5. 31.
    Optical levitation and partial-wave resonances, P. Chylek, J. Kiehl and M.K.W. Ko, Phys. Rev. A 18, 2229–2233 (1978).CrossRefGoogle Scholar

Shaped beams

  1. 32.
    Electromagnetic scattering by a dielectric sphere in a diverging radiation field, H. Chew, M. Kerker and D.D. Cooke, Phys. Rev. A 16, 320–323 (1977).CrossRefGoogle Scholar
  2. 33.
    Light scattering in converging beams, Herman Chew, Milton Kerker and Derry D. Cooke, Opt. Lett. 1, 138–140 (1977).CrossRefGoogle Scholar
  3. 34.
    Elastic scattering of evanescent electromagnetic waves, Herman Chew, Dau-Sing Wang and Milton Kerker, Appl. Opt. 18, 2679–2687 (1979).CrossRefGoogle Scholar
  4. 35.
    Scattering of electromagnetic beams by spherical objects, W.G. Tarn and Robert Corriveau, J. Opt. Soc. Am. 68, 763–767 (1978).CrossRefGoogle Scholar
  5. 36.
    The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center, G. Gouesbet, B. Maheu and G. Grehan, J. Optics 16, 239–247 (1985).CrossRefGoogle Scholar
  6. 37.
    Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism, G. Gouesbet. G. Grehan and B. Maheu, J. Optics 16, 83–93 (1985).CrossRefGoogle Scholar

Interpretations and applications

  1. 38.
    Light scattering by spherical particles, David Sinclair, J. of the Opt. Soc. of Am. 37, 475–480 (1947).CrossRefGoogle Scholar
  2. 39.
    The scattering cross section of spheres for electromagnetic waves, L. Brillouin, J. of Appl. Phys. 20, 1110–1125 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 40.
    Efficiency factors in Mie scattering, H.M. Nussenzveig and W.J. Wiscombe, Phys. Rev. Lett. 45, 1490–1494 (1980).CrossRefGoogle Scholar
  4. 41.
    How can a particle absorb more than the light incident on it? Craig F. Bohren, Am. J. Phys. 51, 323–327 (1983).CrossRefGoogle Scholar
  5. 42.
    Extinction by a spherical particle in an absorbing medium, Craig F. Bohren and Daya P. Gilra, J. Colloid and Interf. Sci. 72, 215–221 (1979).CrossRefGoogle Scholar
  6. 43.
    Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave, Philip L. Marston and James H. Crichton, Phys. Rev. A 30, 2508–2516 (1984).CrossRefGoogle Scholar
  7. 44.
    Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam, Soo Chang and Sand Soo Lee, J. Opt. Soc. Am. B 2, 1853–1860 (1985).CrossRefGoogle Scholar
  8. 45.
    Theory of the photophoretic motion of the large-size volatile aerosol particle, Yu. I. Yalamov, V.B. Kutukov and E.R. Shchukin, J. Colloid Interface Sci. 57, 564–571 (1976).CrossRefGoogle Scholar
  9. 46.
    Comprehensive model of the photophoretic force on a spherical micro-particle, A.B. Pluchino and S. Arnold, Opt. Lett. 10, 261–263 (1985).CrossRefGoogle Scholar
  10. 47.
    Monte Carlo simulation of photophoresis of submicron aerosol particles, Marek Sitarski and Milton Kerker, J. of the Atm. Sciences 41, 2250–2262 (1984).CrossRefGoogle Scholar
  11. 48.
    Theorem on electromagnetic backscatter, R.J. Wagner and P.J. Lynch, Phys. Rev. 131, 21–23 (1963).MathSciNetCrossRefGoogle Scholar
  12. 49.
    Electromagnetic scattering by magnetic spheres, M. Kerker, D.-S. Wang and C.L. Giles, J. Opt. Soc. Am. 73, 765–767 (1983).CrossRefGoogle Scholar
  13. 50.
    Invisible bodies, Milton Kerker, J. of the Opt. Soc. of Am. 65, 376–379 (1975).CrossRefGoogle Scholar
  14. 51.
    Electromagnetic scattering from active objects: invisible scatterers, N.G. Alexopoulos and N.K. Uzunoglu, Appl. Opt. 17, 235–239 (1978).CrossRefGoogle Scholar
  15. 52.
    Electromagnetic scattering from active objects, Milton Kerker, Appl. Opt. 17, 3337–3339 (1978).CrossRefGoogle Scholar
  16. 53.
    Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances, H.-M. Tzeng, K.F. Wall, M.B. Long and R.K. Chang, Opt. Lett. 9, 499–501 (1984).CrossRefGoogle Scholar
  17. 54.
    Coherent anti-Stokes Raman scattering by droplets in the Mie size range, John Cooney and Abraham Cross, Opt. Lett. 7, 218–220 (1982).CrossRefGoogle Scholar
  18. 55.
    Coherent Raman mixing and coherent anti-Stokes Raman scattering from individual micrometer-size droplets, Shi-Xiong Qian, Judith B. Snow, and Richard K. Chang, Opt. Lett. 10, 499–501 (1985).CrossRefGoogle Scholar
  19. 56.
    Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres, H. Chew, D.-S. Wang and M. Kerker, J. of Opt. Soc. of Am. 1, 56–66 (1984).CrossRefGoogle Scholar

C. Cylinders

  1. 57.
    Scattering of a plane wave from a circular dielectric cylinder at oblique incidence, James R. Wait, Canadian J. of Phys. 33, 189–195 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 58.
    The long wavelength limit in scattering from a dielectric cylinder at oblique incidence, James R. Wait, Canadian J. of Phys. 43, 2212–2215 (1965).CrossRefGoogle Scholar
  3. 59.
    Light scattering from long thin glass cylinders at oblique incidence, D.D. Cooke and M. Kerker, J. Opt. Soc. Am. 59, 43–48 (1969).CrossRefGoogle Scholar
  4. 60.
    Some boundary value problems involving plasma media, James R. Wait, J. of Res. of the Nat. Bureau of Standards 65B, 137–150 (1961).MathSciNetGoogle Scholar
  5. 61.
    Interaction between an obliquely incident plane electromagnetic wave and an electron beam in the presence of a static magnetic field of arbitrary strength, K.H.B. Wilhelmsson, J. of Res. of the Nat. Bureau of Standards 66D, 439–451 (1962).Google Scholar
  6. 62.
    Scattering of plane waves from an infinitely long cylinder of anisotropic materials at oblique incidence with an application to an electronic scanning antenna, S.N. Samaddar, Appl. Sci. Res. 10, 385–411 (1963).CrossRefGoogle Scholar
  7. 63.
    Scattering of obliquely incident waves by inhomogeneous fibers, C. Yeh and P.K.C. Wang, J. Appl. Phys. 43, 3999–4006 (1972).CrossRefGoogle Scholar
  8. 64.
    Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles, J.F. Owen, R. K. Chang and P.W. Barber, Aerosol Sci. and Tech. 1, 293–302 (1982).CrossRefGoogle Scholar
  9. 65.
    Resonances in electromagnetic scattering by objects with negative absorption, M. Kerker, Appl. Opt. 18, 1184–1189 (1979).Google Scholar

D. Spheroids

  1. 66.
    Attenuation of electromagnetic wave due to rain with distorted raindrops, J. Oguchi, J. of Radio Res. Labs. 7, 467–485 (1960).Google Scholar
  2. 67.
    Scattering of a plane electromagnetic wave by axisymmetric raindrops, J.A. Morrison and M.-J. Cross, Bell system Tech. J. 53, 955–978, 1008-1019 (1974).Google Scholar
  3. 68.
    Light scattering by a spheroidal particle, S. Asano and G. Yamamoto, Appl. Opt. 14, 29–48 (1975). Errata, ibid. 15, 2028 (1976).Google Scholar
  4. 69.
    Light scattering by randomly oriented spheroidal particles, S. Asano and M. Sato, Appl. Opt. 19, 962–974 (1980).CrossRefGoogle Scholar

E. Clusters of Spheres

  1. 70.
    Multiple scattering of EM waves by spheres, Part I-Multipole expansion and ray-optical solutions, John H. Bruning and Yuen T. Lo, IEEE Transactions on Antennas and Propagation AP-19, 378-390 (1971).Google Scholar
  2. 71.
    Electromagnetic scattering from two dielectric spheres: Comparison between theory and experiment, George W. Kattawar and Cleon E. Dean, Opt. Lett. 8, 48–50 (1983).CrossRefGoogle Scholar
  3. 72.
    Electromagnetic scattering by a cluster of spheres, F. Borghese, P. Denti, G. Toscano and O.I. Sindoni, Appl. Opt. 18, 116–120 (1979).CrossRefGoogle Scholar
  4. 73.
    Use of group theory for the description of electromagnetic scattering from molecular systems, F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, J. Opt. Soc. Am. A 1, 183–188 (1984).MathSciNetCrossRefGoogle Scholar
  5. 74.
    Effects of aggregation on the electromagnetic resonance scattering of dielectric spherical objects, F. Borghese, P. Denti, R. Saija and G. Toscano, I1 Nuovo Cimento 6, 545–557 (1985).CrossRefGoogle Scholar

F. Arbitrary Shape

  1. 75.
    An exact solution for the scattering of electromagnetic waves from conductors of arbitrary shape. I. Case of cylindrical symmetry, Victorr A. Erma, The Phys. Rev. 173, 1243–1257 (1968).MathSciNetCrossRefGoogle Scholar
  2. 76.
    Exact solution for the scattering of electromagnetic waves fron conductors of arbitrary shape. II. General case, Victorr A. Erma, Phys. Rev. 176, 1544–1553 (1968).MathSciNetCrossRefGoogle Scholar
  3. 77.
    Exact solution for the scattering of electromagnetic waves from bodies of arbitrary shape. III. Obstacles with arbitrary electromagnetic properties, Victorr A. Erma, Phys. Rev. 179, 1238–1246 (1969).MathSciNetCrossRefGoogle Scholar

Integral Equation Solutions A. General

  1. 78.
    Tensor scattering matrix for the electromagnetic field, David S. Saxon, Phys. Rev. 100, 1771–1775 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 79.
    On the integral equations for electromagnetic scattering, Staffan Strom, Am. J. of Phys. 43, 1060–1069 (1975).CrossRefGoogle Scholar

B. Extended Boundary Condition Method

  1. 80.
    Matrix formulation of electromagnetic scattering, P.C. Waterman, Proceedings of the IEEE, 805-812, August 1965.Google Scholar
  2. 81.
    Symmetry, unitarity, and geometry in electromagnetic scattering, P. C. Waterman, Phys. Rev. D 3, 825–839 (1971).CrossRefGoogle Scholar
  3. 82.
    T-matrix formulation of electromagnetic scattering from multilayered scatterers, Bo Peterson and Staffan Strom, Phys. Rev. D 10, 2670–2684 (1974).CrossRefGoogle Scholar
  4. 83.
    Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies, P. Barber and C. Yeh, Appl. Opt. 14, 2864–2872 (1975).CrossRefGoogle Scholar
  5. 84.
    Scattering by inhomogeneous nonspherical objects, Dau-Sing Wang and Peter W. Barber, Appl. Opt. 18, 1190–1197 (1979).CrossRefGoogle Scholar
  6. 85.
    Raman and fluorescent scattering by molecules embedded in dielectric spheroids, Dau-Sing Wang, Milton Kerker and Herman W. Chew, Appl. Opt. 19, 2135–2328 (1980).Google Scholar
  7. 86.
    Scattering of sharply focused beams by arbitrarily shaped dielectric particles: An exact solution, C. Yeh, S. Colak and P. Barber, Appl. Opt. 21, 4426–4433 (1982).CrossRefGoogle Scholar
  8. 87.
    Matrix methods in potential theory and electromagnetic scattering, P.C. Waterman, J. Appl. Phys. 50, 4550–4566 (1979).CrossRefGoogle Scholar

C. Iterative Procedures

  1. 88.
    Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer)/wavelength, A.F. Stevenson, J. of Appl. Phys. 24, 1134–1142 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 89.
    Scattering and absorption of light by nonspherical dielectric grains, Edward M. Purcell and Carlton R. Pennypacker, The Astrophysical J. 186, 705–714 (1973).CrossRefGoogle Scholar
  3. 90.
    Variational principle for scattering of light by dielectric particles, Yuk L. Yung, Appl. Opt. 17, 3707–3709 (1978).CrossRefGoogle Scholar
  4. 91.
    Scattering from bodies of revolution, Mogens G. Andreasen, IEEE Trans. on Antennas and Propagation, AP-13, 303-310, March 1965. Erratum, ibid. AP-14, 659 (1966).Google Scholar
  5. 92.
    An integral equation solution to the scattering of electromagnetic radiation by dielectric spheroids and ellipsoids, A.R. Hold, N.K. Uzunoglu, B.G. Evans, IEEE Transactions on Antennas and Propagation, AP-26, 706-712, September 1978.Google Scholar
  6. 93.
    Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields, K. Ohtaka M. Inoue, Phys. Rev. B 25, 677–688 (1982).CrossRefGoogle Scholar
  7. 94.
    Surface enhanced Raman scattering by metal spheres. I. Cluster effect, Masahiro Inoue and Kazuo Ohtaka, J. of the Phys. Society of Japan 52, 3853–3864 (1983).CrossRefGoogle Scholar


  1. 95.
    On the attenuation of plane waves by obstacles of arbitrary size and form, H.C. van de Hulst, Physica XV. No. 8-9, 740-746 (1949).Google Scholar
  2. 96.
    Theory of light scattering and refractive index of solutions of large colloidal particles, B.H. Zimm and W.B. Dandliker, J. Phys. Chem. 58, 644 (1954).CrossRefGoogle Scholar
  3. 97.
    Sum rules for optical scattering amplitudes, Bruce H.J. McKellar, Michael A. Box and Craig F. Bohren, J. Opt. Soc. Am. 72, 535–538 (1982). Erratum.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Milton Kerker
    • 1
  1. 1.Clarkson UniversityPotsdamUSA

Personalised recommendations