Acousto-Ultrasonic Characterization of Physical Properties of Human Bones

  • Avraham Mittelman
  • Itzhak Roman
  • Arye Bivas
  • Isaac Leichter
  • Joseph Y. Margulies
  • Arie Weinreb

Abstract

In this work the Acousto-Ultrasonic (AU) technique was utilized to nondestructively characterize two biological parameters of human bone specimens: the weight and mineral content densities. It has been previously shown that these two parameters have great effect on bone strength, thus by employing the non-invasive AU technique one can obtain vital information about bone strength without using any ionizing radiation. In the present study, the bones were characterized both by common techniques, e.g. γ-rays and AU, and the results of the study indicate that the AU parameter which best correlates with the weight and mineral content densities of human bones was the peak amplitude of the received AU signals. The peak amplitude of the AU signal and the weight density of the bone specimens was found to be linearly related with a coefficient of correlation r = 0.68. The coefficient of linear correlation between the mentioned AU parameter and the mineral content density was r = 0.63. This preliminary study demonstrated the potential of employing the Acousto-Ultrasonic technique as a non-invasive means to determine physical properties of human bones. The results suggest that the peak amplitude of the AU signals can be related to the bone strength.

Keywords

Acoustic Emission Bone Strength Peak Amplitude Acoustic Emission Event Bone Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Hazan, I. Leichter, E. Loewinger, A. Weinreb, and G. C. Robin, Physics in Med. Bio. 22:1073 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    I. Leichter, G. Hazan, A. Weinreb, E. Loewinger, G. C. Robin, J. Menczel, and M. Makin, Clinic. Ortho. Rel. Research 151:232 (1981).Google Scholar
  3. 3.
    J. R. Cameron and J. A. Sorenson, Science 142:230 (1963).ADSCrossRefGoogle Scholar
  4. 4.
    I. Isherwood, R. A. Rutherford, B. R. Pullan, and Adams, Lancet. 2:712 (1976).CrossRefGoogle Scholar
  5. 5.
    M. A. Weissberger, R. G. Zamenhof, S. Aronow, and R. M. Neer, J. Comput. Ass. Tomog. 2:253 (1978).CrossRefGoogle Scholar
  6. 6.
    D. M. Egle and A. E. Brown, J. Acoust. Soc. Am. 57:591 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    J. Rodgers spivnin: “Acoustic Emission Trends 3,” Acoustic Emission Technology Corp., Sacramento (1982).Google Scholar
  8. 8.
    A. Vary and R. F. Lark J. Testing & Eval. 7:185 (1979).CrossRefGoogle Scholar
  9. 9.
    I. Leichter, J. Y. Margulies, A. Weinreb, J. Mizrahi, G. C. Robin, B. Conforty, M. Makin, and B. Bloch, Clinic. Ortho. Rel. Research 163:272 (1982).Google Scholar
  10. 10.
    R. Lakes et al., J. Biomed. Engr. 8:143 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Avraham Mittelman
    • 1
  • Itzhak Roman
    • 1
  • Arye Bivas
    • 1
  • Isaac Leichter
    • 1
  • Joseph Y. Margulies
    • 1
  • Arie Weinreb
    • 2
  1. 1.Hebrew UniversityJerusalemIsrael
  2. 2.Hadassah Medical CenterJerusalemIsrael

Personalised recommendations