Acousto-Ultrasonics: Applications to Wire Rope, Wood Fiber Hardboard, and Adhesion

  • Henrique L. M. dos Reis


Applications of the Acousto-Ultrasonic Stress Wave Factor Technique (SWF) to the nondestructive evaluation/characterization of wire rope, wood fiber hardboard, and adhesion between rubber-like materials and steel substrates are presented. It was observed that for each application the SWF technique has the potential of being used as a nondestructive testing tool. The SWF technique proved successful to monitor progressive damage in wire rope and wood fiber hardboard, and to monitor the strength of the bond between rubber layers and steel plates.


Acoustic Emission Peel Strength Wire Rope Rubber Layer Rubber Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. Vanderveldt and R. D. Young, “A Survey of Publications on Mechanical Wire Rope and Wire Rope Systems,” The Catholic University of America, Washington, DC (1970).Google Scholar
  2. 2.
    “Workshop on Marine Wire Rope,” The Catholic University of America, Washington, DC (1970) .Google Scholar
  3. 3.
    H. R. Weischedel, The Inspection of Wire Rope in Service: A Critical Review Matls Eval. 43:1592 (1985).Google Scholar
  4. 4.
    P. A. Laura, H. H. Vanderveldt, and P. G. Gaffney, Acoustic Detection of Structural Failure of Mechanical Cables, JASA 45:791 (1969).CrossRefGoogle Scholar
  5. 5.
    D. H. Harris and H. L. Dunegan, Acoustic Emission Testing of Wire Rope, Matls Eval. 23:1 (1974).Google Scholar
  6. 6.
    J. W. William, Jr. and S. S. Lee, Acoustic Emission/Rupture Load Characterizations of Double-Braided Nylon Rope, Marine Tech. 19:268 (1982).Google Scholar
  7. 7.
    Y. Toda, H. Yokota, and M. Hanzawa, Detection of Wire Breakage During Tensile Fatigue Tests of Wire Rope, in: “Proceedings of the 10th World Conference on Nondestructive Testing,” Moscow (1982).Google Scholar
  8. 8.
    F. Mantazano, “Axial Fatigue of Wire Rope in Sea Water, OTC 1579,” ASME, Houston, Texas (1973).Google Scholar
  9. 9.
    F. R. Stonesifer, and H. L. Smith H. L., “Tensile Fatigue in Wire Rope, OTC 3419,” ASME, Houston (1979).Google Scholar
  10. 10.
    “Analytical Ultrasonics in Materials Research and Testing,” A. Vary, ed., NASA, Cleveland (1985).Google Scholar
  11. 11.
    A. Vary and R. F. Lark, “Correlation of Fiber Composite Tensile Strength and The Ultrasonic Stress Wave Factor, TM 78846,” NASA, Cleveland (1978).Google Scholar
  12. 12.
    J. H. Williams, Jr. and N. R. Lampert, Ultrasonic Evaluation of Impact-Damage Graphite Fiber Composite, Matls Eval. 38:68 (1980).Google Scholar
  13. 13.
    A. K. Govada, J. C. Duke, Jr., E. G. Henneke, II, and W. W. Stinchcomb, “A Study of the Stress Wave Factor Technique for the Characterization of Composite Materials, CR 174870,” NASA, Cleveland (1985).Google Scholar
  14. 14.
    G. A. Costello, and J. W. Phillips, “Stress Analysis of Wire Hoist Rope, UILU-ENG 83–6006,” University of Illinois, Urbana (1983).Google Scholar
  15. 15.
    H. L. M. dos Reis and D. M. McFarland, On the Acousto-Ultrasonic Non-Destructive Evaluation of Wire Rope Using the Stress Wave Factor Technique, Brit J. NDT. 28:155 (1986).Google Scholar
  16. 16.
    Y. Mataki, “Internal Structure of Fiberboard and its Relation to Mechanical Properties — Theory and Design of Wood and Fiber Composite Materials, Syracuse University Press, Syracuse (1972).Google Scholar
  17. 17.
    F. C. Beall, Relationship of Acoustic Emission to Internal Bond Strength of Wood-Based Composite Panel Materials, J Acous Em. 4:19 (1985).ADSGoogle Scholar
  18. 18.
    H. L. M. dos Reis and D. M. McFarland, On the Acousto-Ultrasonic Characterization of the Wood Fiber Hardboard, J Acous Em. 5:67 (1986).Google Scholar
  19. 19.
    J. M. Rodgers, “Quality Assurance and In-Service Inspection Applications of Acousto-Ultrasonics to Bonded and Composite Structures,” Acoustic Emission Technology Corporation, Sacramento (1983).Google Scholar
  20. 20.
    Standard Test Methods for Rubber Property-Adhesion to Rigid Substrates, ASTM-D429-81, in: “Annual Book of ASTM Standards, 09.01,” ASTM, Baltimore (1985).Google Scholar
  21. 21.
    H. E. Kautz, “Ultrasonic Evaluation of Mechanical Properties of Thick, Multilayered, Filament Wound Composites, TM 87088,“ NASA, Cleveland (1985).Google Scholar
  22. 22.
    R. Talreja, On Fatigue Life Under Stationary Gaussian Random Loads, Eng Frac Mech. 5:993 (1973).CrossRefGoogle Scholar
  23. 23.
    H. L. M. dos Reis, and H. E. Kautz, Nondestructive Evaluation of Adhesive Bond Strength Using the Stress Wave Factor Technique, J Acous Em. 5:144 (1986).Google Scholar
  24. 24.
    S. O. Rice, Mathematical Analysis of Random Noise, Bell Sys Tech Jour. 23:282 (1944).MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tektronix 4050 Series, R08 Signal Processing ROM Pack 2 (FFT) Manual, Part No. 070-2841-00, 1980, Tektronix, Inc., Beaverton, Oregon.Google Scholar
  26. 26.
    H. L. M. dos Reis, L. A. Bergman, and J. H. Bucksbee, Adhesive Bond Strength Quality Assurance Using the Acousto-Ultrasonic Technique, Brit J. NDT. 28:357 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Henrique L. M. dos Reis
    • 1
  1. 1.Department of General EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations