The Acousto-Ultrasonic Approach

  • Alex Vary

Summary

This paper reviews the nature and underlying rationale of the acoustoultrasonic approach, suggests needed advanced signal analysis and evaluation methods, and discusses application potentials. The term acousto-ultrasonics denotes an NDE technique that combines some aspects of acoustic emission methodology with ultrasonic simulation of stress waves. The acousto-ultrasonic approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are factors that underline acousto-ultrasonic evaluations.

Keywords

Acoustic Emission Stress Wave Composite Laminate Interlaminar Shear Strength Probe Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Kanninen and C. H. Popelar, Advanced Fracture Mechanics, Oxford University Press. New York (1985).MATHGoogle Scholar
  2. 2.
    A. Vary, A Review of Issues and Strategies in Nondestructive Evaluation of Fiber Reinforced Structural Composites, in: “New Horizons -Materials and Processes for the Eighties,” SAMPE, Azusa (1979).Google Scholar
  3. 3.
    A. Vary and K. J. Bowles, An Ultrasonic-Acoustic Technique for Nondestructive Evaluation of Fiber Composite Quality, Poly Engrng & Sc.,19:373 (1979) .CrossRefGoogle Scholar
  4. 4.
    “Nondestructive Methods for Material Property Determination,” C. O. Ruud and R. E. Green, Jr. eds., Plenum Press, New York (1984).Google Scholar
  5. 5.
    “Acoustic Emission,” J. R. Matthews, ed., Gordon and Breach Science Publishers, New York (1983).Google Scholar
  6. 6.
    A. Vary, Acousto-Ultrasonic Characterization of Fiber Reinforced Composites, Matls Eval. 40:650 (1982).Google Scholar
  7. 7.
    A. Vary, Concepts and Techniques for Ultrasonic Evaluation of vMaterial Mechanical Properties, in: “Mechanics of Nondestructive Testing,” W. W. Stinchcomb, ed., Plenum Press, New York (1980).Google Scholar
  8. 8.
    R. E. Green, Jr., Basic Wave Analysis of Acoustic Emission, “Mechanics of Nondestructive Testing,” W. W. Stinchcomb, ed., Plenum Press, New York (1980).Google Scholar
  9. 9.
    A. Vary, Ultrasonic Measurement of Material Properties, in: “Research Techniques in Nondestructive Testing, Vol. 4,” R. S. Sharpe, ed., Academic Press, London (1980).Google Scholar
  10. 10.
    J-P. Monchalin and R. Heon, Laser Ultrasonic Generation and Optical Detection with a Confocal Fabry-Perot Interferometer, Matls Eval. 44:1231 (1986).Google Scholar
  11. 11.
    D. A. Hutchins, R. J. Dewhurst, S. B. Palmer, and C. B. Scruby, Laser Generation as a Standard Acoustic Source in Metals, Appl Phys. Ltrs. 38:677 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    A. Sarrafzadeh-Khoee and J. C. Duke Jr., Noncontacting Detection in Ultrasonic Nondestructive Evaluation of Materials: Simple Optical Sensor and Fiber-Optic Interferometric Application, Rev of Sc Instr. 57:2321 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sarrafzadeh-Khoee and J. C. Duke Jr., Small In-Plane/Out-of-Plane Displacement Measurement Using Laser-Speckle interferometry, Exp Tech. 10:18 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Krautkramer and H. Krautkramer, “Ultrasonic Testing of Materials, 2nd Edition.” Springer-Verlag, New York (1969).CrossRefGoogle Scholar
  15. 15.
    Y. Bar-Cohen and D. E. Chimenti, Detection of Porosity in Composites Using Leaky Lamb Waves, in: “Proceedings of the Eleventh World Conference on Nondestructive Testing Vol.III,” Taylor Publishing, Dallas (1985) .Google Scholar
  16. 16.
    H. Kolsky, “Stress Waves in Solids”, Dover, New York (1963).Google Scholar
  17. 17.
    A. Vary, “Ultrasonic Nondestructive Evaluation, Microstructure, and Mechanical Property Interrelations, NASA-TM-86876,” NASA, Cleveland (1984) .Google Scholar
  18. 18.
    A. Vary and K. J. Bowles, Ultrasonic Evaluation of the Strength of Unidirectional Graphite/Polyimide Composites, in: “Proceeding of the Eleventh Symposium on Nondestructive Evaluation”, Southwest Research Institute, San Antonio (1977).Google Scholar
  19. 19.
    J. H. Williams Jr., H. Karagulle, and S.S. Lee, Ultrasonic InputOutput for Transmitting and Receiving Longitudinal Transducers Coupled to Same Face of Isotropic Elastic Plates, Matls Eval., 40:655 (1982) .Google Scholar
  20. 20.
    J. H. Williams Jr., S. S. Lee, and H. Karagulle, Input-Output Characterization of an Ultrasonic Testing System by Digital Signal Analysis, in: “Analytical Ultrasonics in Materials Research and Testing, NASA CP-2383” A. Vary ed NASA Clevelad (1986)Google Scholar
  21. 21.
    J. H. Williams Jr., E. B. Kahn, and S. S. Lee, Effects of Specimen Resonances on Acoustic-Ultrasonic Testing, Matls Eval., 41:1502 (1983).Google Scholar
  22. 22.
    J. H. Hemann and G. Y. Baaklini, The Effect of Stress on Ultrasonic Pulses in Fiber Reinforced Cmmposites, SAMPE Tournal 77.9 (1986)Google Scholar
  23. 23.
    S. I. Rokhlin, Adhesive Joint Evaluation by Ultrasonic Interface and Lamb Waves, in: “Analytical Ultrasonics in Materials Research and Testing. NASA , CP-2383” A. Vary, ed NASA Cleveland (1986)Google Scholar
  24. 24.
    A. K. Govada, J. C. Duke Jr., E. G. Henneke, II, and W. W. Stinchcomb, “A Study of the Stress Wave Factor Technique for the Characterization of Composite Materials, NASA CR-174870,” NASA, Cleveland (1985) .Google Scholar
  25. 25.
    H. E. Kautz, “Ultrasonic Evaluation of Mechanical Properties of Thick, Multilayered, Filament Wound Composites, NASA TM-87088,” NASA, Cleveland (1985) .Google Scholar
  26. 26.
    H. Karagulle, J. H. Williams Jr., and S. S. Lee, Application of Homomorphic Signal Processing to Stress Wave Factor Analysis, Matis Eval. 43:1446 (1985) .Google Scholar
  27. 27.
    A. V. Oppenheim and A. S. Willsky with I. T. Young, “Signals and Systems,” Prentice-Hall, Englewood Cliffs (1983).MATHGoogle Scholar
  28. 28.
    R. A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis,” Prentice-Hall, Englewood Cliffs (1982) .MATHGoogle Scholar
  29. 29.
    R. N. Bracewell, “The Fourier Transform and Its Applications,” McGraw-Hill. New York (1978).MATHGoogle Scholar
  30. 30.
    H. E. Kautz, “Acousto-Ultrasonic Verification of the Strength of Filament Wound Composite Material, NASA TM-88827,” NASA, Cleveland (1986).Google Scholar
  31. 31.
    C. J. Rebello and J. C. Duke Jr., Factors Influencing the Ultrasonic Stress Wave Evaluation of Composite Material Structures, J. of Comp Tech & Res. 8:18 (1986).Google Scholar
  32. 32.
    J. C. Duke Jr., E. G. Henneke II, W. W. Stinchcomb, and K. L. Reifsnider, Characterization of Composite Materials by Means of the Ultrasonic Stress Wave Factor, in: “Composite Structures, 2,” I. H. Marshall, ed., Applied Science Publishers, London (1984).Google Scholar
  33. 33.
    A. Govada, E. G. Henneke II, and R. Talreja, Acousto-Ultrasonic Measurements to Monitor Damage During Fatigue of Composites, in: “1984 Advances in Aerospace Sciences and Engineering,” U. Yuceoglu and R. Hesser, eds., American Society of Mechanical Engineers, New York (1984) .Google Scholar
  34. 34.
    J. H. Williams Jr. and S. S. Lee, Pattern Recognition Characterization of Micromechanical and Morphological Materials States via Analytical Quantitative Ultrasonics, in: “Analytical Ultrasonics in Materials Research and Testing, NASA CP-2383,” A. Vary, ed., (1986).Google Scholar
  35. 35.
    H. C. Andrews, “Introduction to Mathematical Techniques in Pattern Recognition,” Wiley-Interscience, John Wiley and Sons, New York (1972).MATHGoogle Scholar
  36. 36.
    J. H. Williams Jr. and B. Doll, Ultrasonic Attenuation as an Indicator of Fatigue Life of Graphite Fiber Epoxy Composite, Matls Eval. 38:33 (1980).Google Scholar
  37. 37.
    D. W. Fitting and L. Adler, “Ultrasonic Signal Analysis for Nondestructive Evaluation,” Plenum Press, New York (1981).Google Scholar
  38. 38.
    H. L. M. dos Reis, L. A. Bergman, and J. H. Bucksbee, Adhesive Bond Strength Quality Assurance Using the Acousto-Ultrasonic Technique, Brit J NDT 28:357 (1986).Google Scholar
  39. 39.
    H. L. M. dos Reis and H. E. Kautz, Nondestructive evaluation or nonesive Bond Strength Using the Stress Wave Factor Technique, J Acous Em. 5:144 (1986).Google Scholar
  40. 40.
    R. J. Hinrichs and J. M. Thuen, “Control System for Processing Composite Materials,” U. S. Patent No. 4,455,268 (1984).Google Scholar
  41. 41.
    H. L. M. dos Reis and D. M. McFarland, On the Acousto-Ultrasonic Characterization of Wood Fiber Hardboard, J Acous Em. 5:67 (1986).Google Scholar
  42. 42.
    H. L. M. dos Reis and D. M. McFarland, On the Acousto-Ultrasonic Non-Destructive Evaluation of Wire Rope Using the Stress Wave Factor Technique, Brit J NDT 28:155 (1986).Google Scholar
  43. 43.
    A. Vary, P. E. Moorhead, and D. R. Hull, Metal Honeycomb to Porous Wireform Substrate Diffusion Bond Evaluation, Matls Eval. 41:942 (1983).Google Scholar
  44. 44.
    A. Vary and R. F. Lark, Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor, J Test & Eval. 7:185 (1979) .CrossRefGoogle Scholar
  45. 45.
    J. C. Duke Jr., E.G. Henneke II, and W. W. Stinchcomb, “Ultrasonic Stress Wave Characterization of Composite Materials, NASA CR-396,” NASA, Cleveland (1986).Google Scholar
  46. 46.
    J. H. Williams Jr., H. Yuce, and S. S. Lee, Ultrasonic and Mechanical Characterization of Fatigue States of Graphite Epoxy Composite Laminates, Matls Eval. 40:560 (1982). •Google Scholar
  47. 47.
    J. H. Williams Jr. and IN. R. Lampert, Ultrasonic Evaluation or Impact-Damaged Graphite Fiber Composite, Matls Eval. 38:68 (1980).Google Scholar
  48. 48.
    N. Nayeb-Hasemi, M. D. Cohen, J. Zotos, and R. Poormand, Nondestructive Evaluation of Graphite/Epoxy Composite Materials Subjected to Combined Fatigue and Impact, in: “Proceedings of the International Conference and Exposition on Fatigue, Corrosion Cracking, Fracture Mechanics, and Failure Analysis,” American Society for Metals, Cleveland (1986) .Google Scholar
  49. 49.
    J. E. Green and J. Rodgers, Acousto-Ultrasonic Evaluation of ImpactDamaged Graphite Epoxy Composites, in: “Materials Overview for 1982,” SAMPE, Azusa (1982) .Google Scholar
  50. 50.
    J. E. Green, J. D. Carlyle, and P. Kukuchek, Impact Damage Epoxy Composites: Impact Testing and NDT Evaluation, in: “RP/C’83: Composite Solutions to Material Challenges,” Society of the Plastics Industry, New York (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Alex Vary
    • 1
  1. 1.National Aeronautics and Space AdministrationLewis Research CenterClevelandUSA

Personalised recommendations