Skip to main content

Part of the book series: Contemporary Physics ((GTCP))

  • 418 Accesses

Abstract

Ultimate unification of all particles and all interactions is the eternal dream of theoretical physicists. The unified gauge theories have taken us a step closer to realizing the second goal. However, since known “elementary” particles consist of both fermions (q, l) and bosons (photons γ, W, Z color octet of gluons) their ultimate unification would require them either to be composites of some basic set of fermions which can be unified within a Lie group framework or that there must exist a new symmetry that transforms bosons to fermions. In this chapter, we begin discussion of this latter kind of symmetry [1], known as supersymmetry. Supersymmetry was invented in 1973 by Wess and Zumino [2] and earlier in a nonlinear realization by Volkov and Akulov [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For excellent reviews see

    Google Scholar 

  2. A. Salam and J. Strathdee, Fortschr Phys, 26, 57 (1978);

    Article  MathSciNet  Google Scholar 

  3. P. van Niuwenhuizen, Phys. Rep. 68, 189 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Fayet and S. Ferrara, Phys. Rep. 32, 249 (1977);

    Article  MathSciNet  ADS  Google Scholar 

  5. S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Superspace, Benjamin Cummings, New York 1983;

    MATH  Google Scholar 

  6. J. Wess and J. Bagger, Introduction to Super symmetry, Princeton University Press, Princeton, NJ, 1983;

    Google Scholar 

  7. Some more recent reviews are

    Google Scholar 

  8. H. P. Nilles, Phys. Rep. 110, 1 (1984);

    Article  ADS  Google Scholar 

  9. H. Haber and G. Kane, Phys. Rep. 117, 76 (1984);

    Google Scholar 

  10. A. Chamseddin, P. Nath, and R. Arnowitt, Applied N = 1 Supergravity, World Scientific, Singapore, 1984;

    Google Scholar 

  11. B. Ovrut, Lecture Notes by S. Kalara and M. Yamawaki, 1982.

    Google Scholar 

  12. J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974);

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Wess and B. Zumino, Phys. Lett. 49B, 52 (1974).

    Google Scholar 

  14. D. Volkov and V. P. Akulov, JETP Lett. 16, 438 (1972).

    ADS  Google Scholar 

  15. A. Salam and J. Strathdee, Nucl. Phys. B76, 477 (1974);

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Salam and J. Strathdee, Phys. Lett. 51B, 353 (1974).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1986). Global Supersymmetry. In: Unification and Supersymmetry. Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1928-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1928-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1930-7

  • Online ISBN: 978-1-4757-1928-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics