Skip to main content

Technicolor and Compositeness

  • Chapter
  • 425 Accesses

Part of the book series: Contemporary Physics ((GTCP))

Abstract

In the previous chapters we have emphasized that while the success of the SU(2) L × U(1) Y × SU(3) C model has indicated that the unified gauge theories are perhaps the right theoretical framework for the study of quark-lepton interactions, it still leaves a lot of questions unanswered. Some of the outstanding questions are:

  1. (a)

    the nature of the Higgs bosons and the origin of electro-weak symmetry breaking;

  2. (b)

    the apparent superfluous replication of quarks and lepton (and even Higgs bosons if electro-weak symmetry is higher); and

  3. (c)

    the origin of fermion masses which are much smaller than the scale of electro-weak symmetry breaking: for instance, m e, u, d ~ 10-5 W .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Susskind, Phys. Rev. D20, 2619 (1979);

    Article  ADS  Google Scholar 

  2. S. Weinberg, Phys. Rev. D19, 1277 (1979).

    Article  ADS  Google Scholar 

  3. E. Fahri and L. Susskind, Phys. Rev. D20, 3404 (1979);

    Article  ADS  Google Scholar 

  4. S. Dimopoulos, Nucl. Phys. B169, 69 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Simopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979);

    Article  ADS  Google Scholar 

  6. E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).

    Google Scholar 

  7. S. Dimopoulos and J. Ellis, Nucl Phys. B182, 505 (1981).

    Article  ADS  Google Scholar 

  8. S. Raby, S. Dimopoulos, and G. Kane, Nucl. Phys. B182, 77 (1981);

    Article  ADS  Google Scholar 

  9. J. Ellis, M. K. Gaillard, D. Nanopoulos, and P. Sikivie, Nucl Phys. B182, 529 (1981);

    Article  ADS  Google Scholar 

  10. M. A. B. Beg, H. D. Politzer, and P. Ramond, Phys. Rev. Lett. 43, 1701 (1979).

    Article  ADS  Google Scholar 

  11. J. Calmet, S. Narison, M. Perrottet, and E. DeRafael, Rev. Mod. Phys. 49, 21 (1977);

    Article  ADS  Google Scholar 

  12. T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 41, 1573 (1981);

    Article  ADS  Google Scholar 

  13. T. Kinoshita, B. Nizic, and Y. Okamoto, Phys. Rev. Lett. 53, 717 (1984).

    Article  ADS  Google Scholar 

  14. R. Barbieri, L. Maiani, and R. Petronzio, Phys. Lett. 96B, 63 (1980);

    Google Scholar 

  15. S. J. Brodsky and S. D. Drell, Phys. Rev. D22, 2236 (1980).

    ADS  Google Scholar 

  16. See, for instance, models of O. W. Greenberg and J. Sucher, Phys. Lett. 99B, 339(1981);

    Google Scholar 

  17. R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981).

    Google Scholar 

  18. O. W. Greenberg, R. N. Mohapatra, and M. Yasue, Phys. Rev. Lett. 51, 1737 (1983).

    Article  ADS  Google Scholar 

  19. E. J. Eichten, K. D. Lane, and M. E. Peshkin, Phys. Rev. Lett. 50, 811 (1983).

    Article  ADS  Google Scholar 

  20. M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974);

    Article  ADS  Google Scholar 

  21. G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).

    Article  ADS  Google Scholar 

  22. These bounds have been discussed in composite model framework by I. Bars, Nucl. Phys. B198, 269 (1982);

    Article  Google Scholar 

  23. and for a recent discussion of the conditions under which these bounds may be evaded, see

    Google Scholar 

  24. O. W. Greenberg, R. N. Mohapatra, and S. Nussinov, Phys. Lett. 148B, 465 (1984).

    Google Scholar 

  25. B. Weinstein, in TSIMESS Workshop Proceedings, 1983 (edited by T. Goldman et al.), American Institute of Physics, New York, 1983.

    Google Scholar 

  26. G. ’t Hooft, in Recent Developments in Gauge Theories (edited by ???), Plenum, New York, 1980, p. 135.

    Chapter  Google Scholar 

  27. S. L. Alder, Phys. Rev. 177, 2426 (1969);

    Article  ADS  Google Scholar 

  28. R. Jackiw and J. S. Bell, Nuovo Cimeno, 60A, 47 (1969);

    Article  ADS  Google Scholar 

  29. S. L. Alder and W. Bardeen, Phys. Rev. 182, 1517 (1969).

    Article  ADS  Google Scholar 

  30. Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, Nucl. Phys. B177, 157(1981).

    Article  ADS  Google Scholar 

  31. J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).

    ADS  Google Scholar 

  32. J. C. Pati, O. W. Greenberg, and J. Sucher (Phys. Lett. 99B, 339(1981);).

    Google Scholar 

  33. T. Applequist and J. Carrazone, Phys. Rev. D11, 2856 (1975).

    ADS  Google Scholar 

  34. J. Preskill and S. Weinberg, Texas preprint, 1981.

    Google Scholar 

  35. D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983);

    Article  ADS  Google Scholar 

  36. E. Witten, Phys. Rev. Lett. 51, 2351 (1983);

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).

    Article  ADS  Google Scholar 

  38. They are analogous to the massless Goldstone-Majoron boson suggested by Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. 98B, 265 (1981).

    Google Scholar 

  39. For an apparent exception to this argument see an E(6) hypercolor model by Y. Tosa, J. Gibson, and R. E. Marshak, Private communication, 1984.

    Google Scholar 

  40. S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980);

    MathSciNet  Google Scholar 

  41. See also E. C.G. Sudarshan, Phys. Rev. D (1981).

    Google Scholar 

  42. D. A. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D17, 1529 (1978);

    Article  ADS  Google Scholar 

  43. M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).

    Article  ADS  Google Scholar 

  44. L. Abbott and E. Farhi, Phys. Lett. 101B, 69 (1981);

    Google Scholar 

  45. H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B, 319 (1981);

    Google Scholar 

  46. R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981);

    Google Scholar 

  47. For a review see R. N. Mohapatra, Proceedings of the Telemark Neutrino Mass Mini-Conference, 1982, American Institute of Physics, New York, 1982.

    Google Scholar 

  48. J. D. Bjorken, Phys. Rev. D19, 335 (1979);

    MathSciNet  ADS  Google Scholar 

  49. P. Q. Hung and J. J. Sakurai, Nucl. Phys. B143, 81 (1978).

    Article  ADS  Google Scholar 

  50. R. Barbieri and R. N. Mohapatra, Phys. Lett. 120B, 195 (1982).

    Google Scholar 

  51. D. Schildknecht, in Proceedings of the Europhysics Study Conference on Electro-weak Effects at High Energies (edited by H. Newman), Plenum, New York, 1983.

    Google Scholar 

  52. U. Baur, H. Fritzsch, and H. Faissner, Phys. Lett. 135B, 313 (1984).

    Google Scholar 

  53. A. Masiero, R. N. Mohapatra, and R. D. Peccei, Nucl. Phys. B192, 66 (1981).

    Article  ADS  Google Scholar 

  54. A. Masiero and R. N. Mohapatra, Phys. Lett. 103B, 343 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1986). Technicolor and Compositeness. In: Unification and Supersymmetry. Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1928-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1928-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1930-7

  • Online ISBN: 978-1-4757-1928-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics