Advertisement

Left-Right Symmetric Models of Weak Interactions

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)

Abstract

While the standard electro-weak model, based on the spontaneously broken local symmetry SU(3) c × SU(2) L × U(1) Y , has been extremely successful in the description of low-energy weak phenomena, it leaves a lot of questions unanswered. One of the unsolved problems is understanding the origin of parity violation in low-energy physics. An interesting approach is to assume that the interaction Lagrangian (or dynamics) is intrinsically left-right symmetric, the asymmetry observed in nature (i.e., β-decay and μ-decay, etc.) arising from the vacuum being noninvariant under parity symmetry. Within the framework of gauge theories this idea has found its realization in the SU(2)L× SU(2)R× U(1) B-L models [1] constructed in 1973–1974. An important feature of this model is that, at low energies, it reproduces all the features of the SU(2) L × U(1) model, and as we move up in energies new effects associated with parity invariance of the Lagrangian (such as a second natural Z-boson, right-handed charged currents, right-handed neutrino) are supposed to appear.

Keywords

Higgs Boson Neutrino Mass Lepton Number Majorana Neutrino Heavy Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);ADSGoogle Scholar
  2. [1a]
    R. N. Mohapatra and J. G. Pati, Phys. Rev. D11, 566, 2558 (1975);ADSGoogle Scholar
  3. [1b]
    G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975).ADSGoogle Scholar
  4. [2]
    V. Lyubimov et al., Phys. Lett. 94B, 266 (1980).ADSGoogle Scholar
  5. [2a]
    V. Lyubimov, Talk at Leipzig Conference, 1984.Google Scholar
  6. [3]
    R. Cowsik and J. McClelland, Phys. Rev. Lett. 29, 699 (1972);ADSCrossRefGoogle Scholar
  7. [3a]
    S. S. Gershtein and Ya B. Zeldovich, JETP Lett. 4, 120 (1966).ADSGoogle Scholar
  8. [4]
    R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B, 222 (1980);ADSGoogle Scholar
  9. [4a]
    A. Davidson, Phys. Rev. D20, 776 (1979).ADSGoogle Scholar
  10. [5]
    R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1975).ADSGoogle Scholar
  11. [6]
    D. Chang, Nucl. Phys. B214, 435 (1983);ADSCrossRefGoogle Scholar
  12. [6b]
    G. Branco, J. M. Frere, and J. M. Gerard, Nucl. Phys. B221, 317 (1983).ADSCrossRefGoogle Scholar
  13. [7]
    D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. Lett. 50, 1072 (1984);ADSCrossRefGoogle Scholar
  14. [7a]
    D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. D30, 1052 (1984).ADSGoogle Scholar
  15. [8]
    R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980);ADSCrossRefGoogle Scholar
  16. [8a]
    R. N. Mohapatra and G. Senjanovic, Phys. Rev. D21, 165(1981).ADSGoogle Scholar
  17. [9]
    R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).ADSCrossRefGoogle Scholar
  18. [10]
    V. Barger, E. Ma, and K. Whisnant, Phys. Rev. D26, 2378 (1982);ADSGoogle Scholar
  19. [10a]
    I. Liede, J. Malampi, and M. Roos, Nucl. Phys. B146, 157 (1978);ADSCrossRefGoogle Scholar
  20. [10b]
    T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);ADSGoogle Scholar
  21. [10c]
    X. Li and R. E. Marshak, Phys. Rev. D25, 1886 (1982);ADSGoogle Scholar
  22. [10d]
    J. E. Kim, P. Langacker, M. Levine, and H. Williams, Rev. Mod. Phys. 53, 211 (1981).ADSCrossRefGoogle Scholar
  23. [11]
    M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity (edited by D. Freedman et al.), North-Holland, 1979;Google Scholar
  24. [11a]
    T. Yanagida, KEK lectures, 1979;Google Scholar
  25. [11b]
    R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).ADSCrossRefGoogle Scholar
  26. [12]
    M. Gronau and S. Nussinov, Fermilab preprint, 1982;Google Scholar
  27. [12a]
    M. Gronau and R. Yahalom, Nucl. Phys. B236, 233 (1984).ADSCrossRefGoogle Scholar
  28. [13]
    M. A. B. Beg, R. Budny, R. N. Mohapatra, and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977);ADSCrossRefGoogle Scholar
  29. [13a]
    J. Maalampi, K. Mursula, and M. Roos, Nucl. Phys. B207, 233 (1982).ADSCrossRefGoogle Scholar
  30. [14]
    M. Roos et al., Phys. Lett. 111B, 1 (1982).MathSciNetGoogle Scholar
  31. [15]
    F. W. Koks and J. Vanklinken, Nucl. Phys. A272, 61 (1976).ADSGoogle Scholar
  32. [16]
    J. Carr et al., Phys. Rev. Lett. 51, 627 (1983).ADSCrossRefGoogle Scholar
  33. [17]
    F. Corriveau et al., Phys. Rev. D24, 2004 (1981).ADSGoogle Scholar
  34. [18]
    T. Yamazaki et al., KEK preprint, 1983.Google Scholar
  35. [19]
    B. Holstein and S. Treiman, Phys. Rev. D16, 2369 (1977).ADSGoogle Scholar
  36. [20]
    D. Bryman, Talk at Mini-Conference on Low-Energy Tests of Conservation Law, 1983.Google Scholar
  37. [21]
    T. Yamazaki et al., KEK preprint, 1983.Google Scholar
  38. [22]
    I.I. Bigi and J. M. Frere, Phys. Lett. 110B, 255 (1982).ADSGoogle Scholar
  39. [23]
    J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).ADSGoogle Scholar
  40. [24]
    G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).ADSCrossRefGoogle Scholar
  41. [25]
    Earliest use of vacuum saturation of short distance contribution to K L — K s mass difference was byGoogle Scholar
  42. [25a]
    R. N. Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968);ADSCrossRefGoogle Scholar
  43. [25b]
    B. L. Ioffe and E. Shabalin, Sov. J. Nucl Phys. 6, 328 (1967).Google Scholar
  44. [26]
    M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).ADSGoogle Scholar
  45. [27]
    See J. Trampetic, Phys. Rev. D27, 1565 (1983) for a discussion of this point.ADSGoogle Scholar
  46. [28]
    R. N. Mohapatra, G. Senjanovic, and M. Tran, Phys. Rev. D28, 546 (1983);ADSGoogle Scholar
  47. [28a]
    G. Ecker, W. Grimus, and H. Neufeld, CERN preprint TH-3551, 1983;Google Scholar
  48. [28b]
    M. Hwang and R. J. Oakes, Fermilab preprint 83/38-THY, 1983;Google Scholar
  49. [28c]
    H. Harari and M. Leurer, Fermilab preprint 83/59-Thy, 1983;Google Scholar
  50. [28d]
    F. Gilman and M. Reno, Phys. Rev. D29, 937 (1974).ADSGoogle Scholar
  51. [29]
    L. Wolfenstein, Nucl. Phys. B160, 1979 (1981);Google Scholar
  52. [29a]
    C. Hill, Phys. Lett. 97B, 275 (1980).ADSGoogle Scholar
  53. [29a]
    I.I. Bigi and J. M. Frere, University of Michigan preprint, 1983.Google Scholar
  54. [30]
    R. N. Mohapatra, F. E. Paige, and D. P. Sidhu, Phys. Rev. D17, 2642 (1978).Google Scholar
  55. [31]
    A. Datta and A. Raychaudhuri, Calcutta preprint CU PP/82–7, 82–88, 1982;Google Scholar
  56. [31a]
    F. Olness and M. E. Ebel, Wisconsin preprint, 1983;Google Scholar
  57. [31b]
    T. Rizzo, Iowa preprint, 1983.Google Scholar
  58. [32]
    T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);ADSGoogle Scholar
  59. [32a]
    W. Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983).ADSCrossRefGoogle Scholar
  60. For a more recent detailed study, seeGoogle Scholar
  61. [32b]
    N. G. Deshpande, J. Gunion and B. Kayser, Proceedings of the Telemark Conference (edited by V. Barger), 1984. American Institute of Physics, New York.Google Scholar
  62. [33]
    K. Winter, CERN preprint (unpublished).Google Scholar
  63. [34]
    V. Lubimov et al., Phys. Lett. 94B, 266 (1980).ADSGoogle Scholar
  64. [35]
    G. Barbiellini and R. Santoni, Rev. del. Nuovo Cimento (1986).Google Scholar
  65. [36]
    F. Wagner et al., Argus Collaboration (unpublished).Google Scholar
  66. [37]
    For a review seeGoogle Scholar
  67. [37a]
    H. H. Williams, Proceedings of the SLAC Summer School (edited by M. Zipf), 1982.Google Scholar
  68. [38]
    For a pedagogical review seeGoogle Scholar
  69. [38a]
    R. N. Mohapatra, Forschritte Phys. 31, 185 (1983).ADSCrossRefGoogle Scholar
  70. [39]
    D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1819 (1978);ADSGoogle Scholar
  71. Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Rev. Lett. 45, 1926 (1981).ADSCrossRefGoogle Scholar
  72. [39a]
    S. Sarkar and A. M. Cooper, CERN preprint, 1984.Google Scholar
  73. [39b]
    A. Kumar and R. N. Mohapatra, Phys. Lett. 150B, 191 (1985).ADSGoogle Scholar
  74. [40]
    R. N. Mohapatra and J. D. Vergados, Phys. Rev. Lett. 47, 1713 (1981);ADSCrossRefGoogle Scholar
  75. [40a]
    C. Piccioto and M. Zahir, Phys. Rev. D26, 2320 (1982).ADSGoogle Scholar
  76. [41]
    B. Kayser, Phys. Rev. D26, 1662 (1982).ADSGoogle Scholar
  77. [42]
    L. Wolfenstein, Phys. Lett. 107B, 77 (1981).ADSGoogle Scholar
  78. [43]
    J. Valle, Phys. Rev. D27, 1672 (1983);ADSGoogle Scholar
  79. [43a]
    S. Petcov, Phys. Lett. HOB, 245 (1982);Google Scholar
  80. [43b]
    M. Doi, M. Kenmoku, T. Kotani, H. Nishiura, and E. Taskasugi, Osaka preprint OS-GE-83–48, 1983.Google Scholar
  81. [44]
    K. M. Case, Phys. Rev. 107, 307 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  82. [45]
    D. Chang and R. N. Mohapatra, Phys. Rev. D32, 1248 (1985).ADSGoogle Scholar
  83. [46]
    M. Roncadelli and G Senjanovic, Phys. Lett. 107B, 59 (1983).ADSGoogle Scholar
  84. [47]
    P. Pal, Carnegie-Mellon preprint, 1983.Google Scholar
  85. [47a]
    S. Pakvasa and B. McKellar, Hawaii preprint, 1982.Google Scholar
  86. [48]
    Y. Hosotani, Nucl. Phys. B191, 411 (1981);ADSCrossRefGoogle Scholar
  87. J. Schecter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).ADSGoogle Scholar
  88. [49]
    For a recent discussion seeGoogle Scholar
  89. [49a]
    S. Sarkar and A. M. Cooper, CERN preprint, 1984.Google Scholar
  90. [50]
    H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959);ADSCrossRefGoogle Scholar
  91. [50a]
    H. Primakoff and S. P. Rosen,Proc. Phys. Soc. (London) 78, 464 (1961);ADSCrossRefGoogle Scholar
  92. [50a]
    A. Halprin, P. Minkowski, H. Primakoff, and S. P. Rosen, Phys. Rev. D13, 2567 (1976);ADSGoogle Scholar
  93. [50b]
    M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Prog. Theor. Phys. 66, 1765 (1981);ADSCrossRefGoogle Scholar
  94. [50c]
    M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Prog. Theor. Phys. 68, 348 (1982) (E);ADSCrossRefGoogle Scholar
  95. [50c]
    W. C. Haxton, G. J. Stehenson, Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981);ADSCrossRefGoogle Scholar
  96. [50d]
    W. C. Haxton, G. J. Stehenson, Jr., and D. Strottman, Phys. Rev. D25, 2360 (1982);ADSGoogle Scholar
  97. [50e]
    J. D. Vergados, Phys. Rev. C24, 640 (1981).ADSGoogle Scholar
  98. [51]
    F. Avignone et al., Talk at Fourth Workshop on Grand Unification, held in Philadelphia, 1983;Google Scholar
  99. [51a]
    E. Fiorini, Proceedings of XXI International Conference on High Energy Physics, Paris, 1982.Google Scholar
  100. [52]
    Riazuddin, R. E. Marshak, and R. N. Mohapatra, Phys. Rev. D24, 1310 (1981).ADSGoogle Scholar
  101. [53]
    W. Caswell, J. Milutinovic, and G. Senjanovic, Phys. Rev. D26, 161 (1982);ADSGoogle Scholar
  102. [53a]
    S. Rao and R. Shrock, Stonybrook preprint, 1983.Google Scholar
  103. [54]
    J. Pasupathy, Phys. Lett. B (to be published);Google Scholar
  104. [54a]
    S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982);ADSGoogle Scholar
  105. [54b]
    U. Sarkar and S. P. Misra, Phys. Rev. D28, 249 (1983).ADSGoogle Scholar
  106. [55]
    K. Chetyrkin et al., Phys. Lett. 99B, 358 (1981);MathSciNetADSGoogle Scholar
  107. [55a]
    P. G. Sandars, J. Phys. G6, L161 (1980);ADSGoogle Scholar
  108. [55b]
    Riazzuddin, Phys. Rev. D25, 885 (1982);ADSGoogle Scholar
  109. [55c]
    C. Dover, M. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);ADSGoogle Scholar
  110. [55d]
    W. Alberico et al., Phys. Lett. 114B, 266 (1982);ADSGoogle Scholar
  111. [55e]
    A. Kerman et al., MIT preprint, 1983;Google Scholar
  112. [55f]
    R. N. Mohapatra, Proceedings of the Harvard Workshop on N — N Oscillation, 1982.Google Scholar
  113. [56]
    R. Bionta et al., Phys. Lett. 114B, 266 (1982);Google Scholar
  114. [56a]
    V. L. Narasimhan et al., Chapter V;Google Scholar
  115. [57]
    Barnes et al., Phys. Rev. Lett. 29, 1132 (1972);ADSCrossRefGoogle Scholar
  116. [57a]
    Poth et al., Nucl. Phys. A294, 435 (1977);ADSGoogle Scholar
  117. [57b]
    Roberson et al., Phys. Rev. C16, 1945 (1977);ADSGoogle Scholar
  118. [57c]
    C. J. Batty, Rutherford Laboratory preprint, 1981.Google Scholar
  119. [58]
    J. Cote et al., Phys. Rev. Lett. 48, 13198 (1982).CrossRefGoogle Scholar
  120. [59]
    R. Auerbach et al., Phys. Rev. Lett. 46, 702 (1980).ADSCrossRefGoogle Scholar
  121. [60]
    Riazzuddin, Phys. Rev. D25, 885 (1982).ADSGoogle Scholar
  122. [61]
    C. Dover, A. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983).ADSGoogle Scholar
  123. [62]
    A. Kerman et al., MIT preprint, 1983.Google Scholar
  124. [63]
    L. Jones et al., Phys. Rev. Lett. 52, 720 (1984).ADSCrossRefGoogle Scholar
  125. [64]
    P. K. Kabir, Phys. Rev. Lett. (1983).Google Scholar
  126. [65]
    S. L. Glashow, Cargese lectures, 1979.Google Scholar
  127. [66]
    R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183 (1980).ADSGoogle Scholar
  128. [67]
    M. Baldoceolin et al., CERN preprint, 1983.Google Scholar
  129. [68]
    A Higgs model realization of this idea has been discussed recently by J. C. Pati, A. Salam, and U. Sarkar, University of Maryland preprint, 1983.Google Scholar
  130. [69]
    The A(B + L) = 0 result was first realized in a composite model byGoogle Scholar
  131. [69a]
    H. Harari, R. N. Mohapatra, and N. Seiberg, Nucl Phys. B209, 174 (1982).ADSCrossRefGoogle Scholar
  132. [70]
    D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Parida, Phys. Rev. D31, 1718 (1985).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations