Spontaneous Symmetry Breaking, Nambu-Goldstone Bosons, and the Higgs Mechanism

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)


A Lagrangian for a physical system may be invariant under a given set of symmetry [1] transformations; but how the symmetry is realized in nature depends on the properties of the ground state. In field theories the ground state is the vacuum state. We will, therefore, have to know how the vacuum state responds to symmetry transformations.


Gauge Field Goldstone Boson Symmetry Transformation Coset Space Canonical Commutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For an excellent discussion of and References on symmetries and spontaneously broken symmetries, see S. Weinberg, Brandeis Lectures, 1970;Google Scholar
  2. M. A. B. Beg, Lectures Notes in Mexico, 1971;Google Scholar
  3. G. Guralnik, C. R. Hagen, and T. W. B. Kibble, Advances in High-Energy Physics (edited by R. Cool and R. E. Marshak), Wiley, New York, 1969.Google Scholar
  4. R. Gatto, A Basic Course in Modern Weak Interaction Theory, Bologna preprint (1979) (unpublished).Google Scholar
  5. [2]
    Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Lett. 98B, 265 (1981).Google Scholar
  6. [3]
    For a survey of known limits on long-range forces, see G. Feinberg and J. Sucher, Phys. Rev. D20, 1717 (1979).ADSCrossRefGoogle Scholar
  7. [4]
    G. Gelmini, S. Nussinov, and T. Yanagida, Nucl. Phys. B219, 31 (1983);ADSCrossRefGoogle Scholar
  8. H. Georgi, S. L. Glashow, and S. Nussinov, Nucl. Phys. B193, 297 (1981);ADSCrossRefGoogle Scholar
  9. J. Moody and F. Wilczek, Phys. Rev. D30, 130 (1984).ADSGoogle Scholar
  10. [5]
    G. Gelmini and M. Roncadelli, Phys. Lett. 99B, 411 (1981).Google Scholar
  11. [6]
    R. Barbieri, R. N. Mohapatra, D. V. Nanopoulos, and D. Wyler, Phys. Lett. 107B, 80(1981).Google Scholar
  12. [7]
    N. Ramsey and R. F. Code, Phys. Rev. A4, 1945 (1971).Google Scholar
  13. [8]
    R. Barbieri and R. N. Mohapatra, Z. Phys. C. 11, 175 (1981);ADSCrossRefGoogle Scholar
  14. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982);MathSciNetADSCrossRefGoogle Scholar
  15. D. Reiss, Phys. Lett. 115B, 217 (1982).Google Scholar
  16. [9]
    J. E. Kim, Phys. Rev. Lett. 43, 103 (1979);ADSCrossRefGoogle Scholar
  17. M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 101B, 199 (1981);Google Scholar
  18. D. Chang, R. N. Mohapatra, S. Nussinov, Phys. Rev. Lett. 55, 2835 (1985).ADSCrossRefGoogle Scholar
  19. [10]
    R. V. Eotvos, D. Pekar, and E. Fekele, Ann. Phys. 68, 11 (1922).CrossRefGoogle Scholar
  20. [11]
    V. B. Braginsky and V. I. Panov, Sov. Phys. JETP 34, 464 (1972);ADSGoogle Scholar
  21. For other related experiments, see H. J. Paik, Phys. Rev. D19, 2320 (1979);ADSGoogle Scholar
  22. H. J. Paik, H. A. Chan, and M. Moody, Proceedings of the Third Marcel Gross-mann Meeting on General Relativity, 1983, p. 839;Google Scholar
  23. R. Spero, J. K. Hoskins, R. Newman, J. Pellam, and J. Schultz, Phys. Rev. Lett. 44, 1645 (1980).ADSCrossRefGoogle Scholar
  24. [12]
    D. R. Long, Phys. Rev. D9, 850 (1974);ADSGoogle Scholar
  25. Y. Fujii and K. Mima, Phys Lett. 79B, 138 (1978)Google Scholar
  26. Y. Fujii and K. Mima Nature 260, 417 (1976).CrossRefGoogle Scholar
  27. [13]
    D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1829 (1978).ADSGoogle Scholar
  28. [14]
    M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 18, 1522 (1982).ADSCrossRefGoogle Scholar
  29. [15]
    S. Bludman and A. Klein, Phys. Rev. 131, 2363 (1962).MathSciNetGoogle Scholar
  30. [16]
    G. ′t Hooft, Nucl. Phys. 33B, 173 (1971).ADSCrossRefGoogle Scholar
  31. [17]
    For a detailed discussion of renormalizability of Yang-Mills theories, see E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973);ADSCrossRefGoogle Scholar
  32. G. ′t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972);ADSCrossRefGoogle Scholar
  33. H. Kluberg-Stein and J. B. Zuber, Phys. Rev. D12, 467, 482, 3159 (1975);ADSGoogle Scholar
  34. C. Becchi, A. Rouet, and R. Stora, Commun. Math. Phys. 42, 127 (1975);MathSciNetADSCrossRefGoogle Scholar
  35. J. C. Taylor, Nucl. Phys. B33, 436 (1971);ADSCrossRefGoogle Scholar
  36. J. Zino-Justin, Lecture Notes, Bonn, 1974.Google Scholar
  37. [18]
    S. Adler, Phys. Rev. 177, 2426 (1969);ADSCrossRefGoogle Scholar
  38. J. Bell and R. Jackiw, Nuovo Cimento, 51A, 47 (1969);ADSGoogle Scholar
  39. W. Bardeen, Phys. Rev. 184, 1848 (1969).ADSCrossRefGoogle Scholar
  40. [19]
    D. Gross and R. Jackiw, Phys. Rev. D6, 477 (1972);ADSCrossRefGoogle Scholar
  41. C. Bouchiat, J. Illiopoulos, and Ph. Meyer, Phys Lett. 38B, 519 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations