Skip to main content

Local Supersymmetry (N = 1)

  • Chapter
Unification and Supersymmetry

Part of the book series: Contemporary Physics ((GTCP))

  • 421 Accesses

Abstract

In this chapter we will study the implications of the hypothesis that the parameters of supersymmetry transformation ε become a function of space-time, i.e., ε = ε(x). We know, from Chapter 1, that invariance under local symmetry requires new fields in the theory which have spin 1, and have the same number of components as the number of independent parameters in the group. In analogy, local supersymmetry will require the introduction of the spin 3/2 field which is the Majorana type. This will bring us into a completely new domain of particle physics where new spin 3/2 elementary fields interact with ordinary matter fields. Furthermore, there will also be analogs of the Higgs mechanism once supersymmetry is spontaneously broken (the so-called super-Higgs effect). There is, however, a much more profound aspect to local supersymmetry. Once the spin 3/2 fields are introduced, to make the theory supersymmetric in the high spin sector, it will turn out that we will require a massless spin 2 field which can be identified with the graviton field g μυ , thus “unifying” gravitation with the other three forces of nature. This discovery was made independently by Freedman, Ferrara, and Van Niuen-huizen [1], and by Deser and Zumino [1], and opened up a whole new possibility, not only of unification of gravity with particle physics [2] but also of new consequences for particle physics with supersymmetry. We will call the spin 3/2 particle gravitino and denote it by a Majorana field Ψ μ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Freedman, S. Ferrara, and P. Van Nieuwenhuizen, Phys. Rev. D13, 3214 (1976);

    MathSciNet  ADS  Google Scholar 

  2. S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976).

    MathSciNet  Google Scholar 

  3. For a review see

    Google Scholar 

  4. P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Misner, K. S. Thorne, and J. Wheeler, Gravitation, Freeman, San Francisco, 1970;

    Google Scholar 

  6. S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972.

    Google Scholar 

  7. M. Kaku, P. K. Townsend, and P. Van Nieuwenhuizen, Phys. Rev. D17, 3179 (1978).

    MathSciNet  ADS  Google Scholar 

  8. T. Kugo and S. Uehara, Nucl. Phys. B222, 125 (1983).

    Article  ADS  Google Scholar 

  9. K. S. Stelle and P. C. West, Nucl. Phys. B145, 175 (1978);

    Article  ADS  Google Scholar 

  10. P. Van Nieuwenhuizen and S. Ferrara, Phys. Lett. B76, 404 (1978);

    MathSciNet  Google Scholar 

  11. E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Phys. Lett. 116B, 231 (1982);

    Google Scholar 

  12. E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Nucl. Phys. B212, 413 (1983);

    Article  ADS  Google Scholar 

  13. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. Van Nieuwenhuizen, Nucl. Phys. B147, 105 (1979);

    Article  ADS  Google Scholar 

  14. A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1982).

    Article  ADS  Google Scholar 

  15. M. Sohnius and P. West, Phys. Lett. 105B, 353 (1981).

    Google Scholar 

  16. C. S. Aulakh, M. Kaku, and R. N. Mohapatra, Phys. Lett. 126B, 183 (1983);

    Google Scholar 

  17. K. T. Mahanthappa and G. Stabler, VPI preprint, 1985.

    Google Scholar 

  18. P. Breitenlohner, Phys. Lett. 67B, 49 (1977).

    Google Scholar 

  19. B. de Wit and P. Van Nieuwenhuizen, Nucl. Phys. B139, 216 (1978).

    Article  ADS  Google Scholar 

  20. V. O. Rivelles and J. G. Taylor, Phys. Lett. 113B, 467 (1982).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1986). Local Supersymmetry (N = 1). In: Unification and Supersymmetry. Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1928-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1928-4_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1930-7

  • Online ISBN: 978-1-4757-1928-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics