Advertisement

Important Basic Concepts in Particle Physics

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)

Abstract

Forces observed in nature can be classified into four categories according to their observed strength at low energies: strong, electromagnetic, weak, and gravitational. Their strengths, when characterized by dimensionless parameters, are roughly of the following orders of magnitude:

Keywords

Gauge Theory Weak Interaction Gauge Boson Global Symmetry Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a discussion of weak interactions, see R. E. Marshak, Riazuddin, and C. Ryan, Theory of Weak Interactions in Particle Physics, Wiley, New York, 1969;Google Scholar
  2. E. D. Commins, Weak Interactions, McGraw-Hill, New York, 1973;Google Scholar
  3. J. J. Sakurai, Currents and Mesons, University of Chicago Press, Chicago, 1969.Google Scholar
  4. [2]
    M. Gell-Mann, Phys. Lett. 8, 214 (1964);ADSCrossRefGoogle Scholar
  5. G. Zweig, CERN preprint 8182/Th. 401 (1964), reprinted in Developments in Quark Theory of Hadrons, Vol. 1, 1964–1978 (edited by S. P. Rosen and D. Lichtenberg), Hadronic Press, MA., 1980.Google Scholar
  6. [3]
    Some general References on recent developments in gauge theories are J. C. Taylor, Gauge Theories of Weak Interactions, Cambridge University Press, Cambridge, 1976;Google Scholar
  7. C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Benjamin-Cummings, New York, 1983;Google Scholar
  8. R. N. Mohapatra and C. Lai, Gauge Theories of Fundamental Interactions, World Scientific, Singapore, 1981;Google Scholar
  9. A. Zee, Unity of Forces in Nature, World Scientific, Singapore, 1983;Google Scholar
  10. M. A. Beg and A. Sirlin, Phys. Rep. 88,1 (1982)ADSCrossRefGoogle Scholar
  11. M. A. Beg and A. SirlinAnn. Rev. Nucl. Sci. 24, 379 (1974);ADSCrossRefGoogle Scholar
  12. E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973);ADSCrossRefGoogle Scholar
  13. T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford University Press, New York, 1984;Google Scholar
  14. P. Langacker, Phys. Rep. 72C, 185 (1981);ADSCrossRefGoogle Scholar
  15. G. G. Ross, Grandunified Theories, Benjamin-Cummings, 1985.Google Scholar
  16. L. B. Okun, Leptons and Quarks, North-Holland, Amsterdam, 1981.Google Scholar
  17. R. N. Mohapatra, Fortsch. Phys. 31, 185 (1983).ADSCrossRefGoogle Scholar
  18. A. Masiero, D. Nanopoulos, C. Kounas and K. Olive, Granduniflcation and Cosmology, World Scientific, Singapore, 1985.Google Scholar
  19. [4]
    O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964);ADSCrossRefGoogle Scholar
  20. M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965);MathSciNetADSCrossRefGoogle Scholar
  21. H. Fritzsch, M. Gell-Mann, and H. Leutweyler, Phys. Lett. 478, 365 (1973).Google Scholar
  22. [5]
    A. Gamba, R. E. Marshak, and S. Okubo, Proc. Nat. Acad. Sci. (USA) 45, 881 (1959);MathSciNetADSCrossRefGoogle Scholar
  23. J. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255 (1965);MathSciNetADSGoogle Scholar
  24. S. L. Glashow, J. Illiopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  25. [6]
    J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);ADSGoogle Scholar
  26. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  27. [7]
    M. Gell-Mann, Physics 1, 63 (1964).Google Scholar
  28. [8]
    S. Ll Adler, Phys. Rev. Lett. 14, 1051 (1965);ADSzbMATHCrossRefGoogle Scholar
  29. W. I. Weisberger, Phys. Rev. Lett. 14, 1047 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. [9]
    C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).MathSciNetADSCrossRefGoogle Scholar
  31. [10]
    R. Shaw, Problem of Particle Types and Other Contributions to the Theory of Elementary Particles Ph.D. Thesis, Cambridge University, 1955.Google Scholar
  32. [11]
    O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964);ADSCrossRefGoogle Scholar
  33. M. Y. Han and Y. Nambu, Phys. Revs. 139, B1006 (1965).MathSciNetADSCrossRefGoogle Scholar
  34. O. W. Greenberg and C. A. Nelson, Phys. Rep. 32, 69 (1977);ADSCrossRefGoogle Scholar
  35. W. Marciano and H. Pagels, Phys. Rep. 36C, 137 (1978).ADSCrossRefGoogle Scholar
  36. [12]
    J. D. Bjorken, Phys. Rev. 179, 1547 (1969).ADSCrossRefGoogle Scholar
  37. [13]
    R. Feynman, Photon-Hadron Interactions, Benjamin, Reading, M.A., 1972.Google Scholar
  38. [14]
    J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).ADSCrossRefGoogle Scholar
  39. [15]
    K. Wilson, Phys. Rev. 179, 1499 (1969);MathSciNetADSCrossRefGoogle Scholar
  40. R. Brandt and G. Preparata, Nucl. Phys. 27B, 541 (1971);ADSCrossRefGoogle Scholar
  41. H. Fritzsch and M. Gell-Mann, Proceedings of the Coral Gables Conference, 1971;Google Scholar
  42. Y. Frishman, Phys. Rev. Lett. 25, 966 (1970).ADSCrossRefGoogle Scholar
  43. [16]
    C. G. Callan, Phys. Rev. D2, 1541 (1970);ADSCrossRefGoogle Scholar
  44. K. Symanzik, Comm. Math. Phys. 18, 227 (1970).MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. [17]
    D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973);ADSCrossRefGoogle Scholar
  46. D. Gross and F. Wilczek, 30, 1346 (rd).Google Scholar
  47. [18]
    K. Wilson, Phys. Rev. D3, 1818 (1971).MathSciNetADSGoogle Scholar
  48. [19]
    Most recent determination of sin θ C is by M. Bourquin et al., Z. Phys. C (to appear).Google Scholar
  49. L. L. Chau, Phys. Rep. 95C, 1 (1983).ADSCrossRefGoogle Scholar
  50. [20]
    F. Hasert et al., Phys. Lett. 46B, 121 (1973);CrossRefGoogle Scholar
  51. B. Aubert et al., Phys. Rev. Lett. 32, 1457 (1974);ADSCrossRefGoogle Scholar
  52. A. Benvenuti et al., Phys. Rev. Lett. 32, 800 (1974);ADSCrossRefGoogle Scholar
  53. B. Barish et al., Phys. Rev. Lett. 32, 1387 (1974).ADSCrossRefGoogle Scholar
  54. [21]
    J. J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974);ADSCrossRefGoogle Scholar
  55. J.-E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974);ADSCrossRefGoogle Scholar
  56. G. Goldhaber et al., Phys. Rev. Lett. 37, 255 (1976);ADSCrossRefGoogle Scholar
  57. I. Peruzzi et al., Phys. Rev. Lett. 37, 569 (1976);ADSCrossRefGoogle Scholar
  58. E. G. Cazzoli et al., Phys. Rev. Lett. 34, 1125 (1975).ADSCrossRefGoogle Scholar
  59. [22]
    For a recent survey, see M. Perl, Physics in Collison, Vol. 1 (edited by W. P. Trower and G. Bellini), Plenum, New York, 1982.Google Scholar
  60. [23]
    S. W. Herb et al., Phys. Rev. Lett. 39, 252 (1977);MathSciNetADSCrossRefGoogle Scholar
  61. W. R. Innes et al., Phys. Rev. Lett. 39, 1240 (1977);ADSCrossRefGoogle Scholar
  62. C. W. Darden et al., Phys. Lett. 76B, 246 (1978);Google Scholar
  63. Ch. Berger et al., Phys. Lett. 76B, 243 (1978).Google Scholar
  64. [24]
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations