Ancient Carbon Cycle Changes Derived from Tree-Ring 13C and 14C

  • Minze Stuiver


Current research places major emphasis on atmospheric CO2 concentration because this variable is important in modeling climatic change. The history of atmospheric CO2, however, is described not only by concentration change but also by changes in its isotopic composition. Two stable isotopes, 12C and 13C, exist for carbon, whereas 14C, a radioactive isotope, is also present in the natural carbon cycle.


Tree Ring Isotope Fractionation Sunspot Number Suess Effect Varve Chronology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baillie, M. G. L., J. R. Pilcher, and G. W. Pearson. 1983. Dendrochronology at Belfast as a background to high-prevision calibration. Radiocarbon 25: 171–178.Google Scholar
  2. Barbetti, M. 1980. Geomagnetic strength over the last 50,000 years and changes in atmospheric “C concentration: emerging trends. Radiocarbon 22: 192–199.Google Scholar
  3. Barnola, J. M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice. Nature 303: 410–413.CrossRefGoogle Scholar
  4. Barton, C. E. and R. T. Merrill. 1983. Archaeo-and paleosecular variation, and long term asymmetries of the geomagnetic field. Rev. Geophys. Space Phys. 21: 603–614.Google Scholar
  5. Becker, B. 1983. The long-term radiocarbon trend of the absolute German oak tree-ring chronology, 2800–800 BC. Radiocarbon 25: 197–293.Google Scholar
  6. Beer, J., M. Andree, H. Oeschger, G. Bonani, H. J. Hofmann, E. Morenzoni, M. Nessi, M. Suter, H. Wölfli, R. Finkel, and C. Langway, Jr. 1984a. Abstract, Third International Symposium on Accelerator Mass Spectrometry, Zurich, Switzerland, April 10–13, 1984.Google Scholar
  7. Beer, J., U. Siegenthaler, H. Oeschger, M. Andree, G. Bonani, M. Suter, W. Wölfli, R. C. Finkel, and C. C. Langway. 1984b. Temporal variations in the ‘Be concentration levels found in the Dye 3 ice core, Greenland. Ann. Glaciol. 5: 16–17.Google Scholar
  8. Broecker, W. S. 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46: 1689–1750.Google Scholar
  9. Bruns, M., M. Rhein, T. W. Linick, and H. E. Suess. 1983. The atmospheric 14C level in the 7th millenium BC. PACT 8: 511–516.Google Scholar
  10. Cain, W. F. and H. E. Suess. 1976. Carbon-14 in tree rings. J. Geophys. Res. 81: 3688–3694.Google Scholar
  11. de Jong, A. F. M. and W. G. Mook. 1982. An anomalous Suess effect above Europe. Nature 298: 641–644.CrossRefGoogle Scholar
  12. Eddy, J. A. 1976. The Maunder Minimum. Science 192: 1189–1202.CrossRefGoogle Scholar
  13. Farquhar, G. 1980. Carbon isotope discrimination by plants. In G. I. Pearman (ed.), Carbon Dioxide and Climate: Australian Research, pp. 195–110. Australian Academy of Science, Canberra.Google Scholar
  14. Ferguson, C. W. and D. A. Graybill. 1983. Dendrochronology of bristlecone pine: a progress report. Radiocarbon 25: 287–288.Google Scholar
  15. Francey, R. J. 1981. Tasmanian tree rings belie suggested anthropogenic 13C/12C trends. Nature 290: 232–235.CrossRefGoogle Scholar
  16. Francey, R. J. and G. D. Farquhar. 1982. An explanation of the 13C/12C variations in tree rings. Nature 297: 28–31.CrossRefGoogle Scholar
  17. Freyer, H. D. and N. Belacy. 1983. 13C/12C records in northern hemispheric trees during the past 500 years, anthropogenic impact and climatic superpositions. J. Geophys. Res. 88: 6844–6852.Google Scholar
  18. Friedli, H., E. Moor, H. Oeschger, U. Siegenthaler, and B. Stauffer. 1984. 13C/12C ratios in CO2 extracted from Antarctic ice. Geophys. Res. Lett. 11: 1145–1148.Google Scholar
  19. Fromm, E. 1970. An estimation of errors in the Swedish varve chronology. In I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium, pp. 163–172. Wiley Interscience, New York.Google Scholar
  20. Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53 (3): 235–262.CrossRefGoogle Scholar
  21. In Che Yang, A. and A. Fairhall. 1972. Variations of natural radiocarbon during the last 11 millenia and geophysical methods for producing them. R. Soc. N. Z. Bull. A: 44–57.Google Scholar
  22. Keeling, C. D., R. B. Bacastow, and T. P. Whorf. 1982. Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 377–385. Oxford University Press, New York.Google Scholar
  23. Keir, R. S. 1983. Reduction of the thermohaline circulation during deglaciation: the effect on atmospheric radiocarbon and CO2. Earth Planet. Sci. Lett. 64: 445456.Google Scholar
  24. Kruse, H. H., T. W. Linick, H. E. Suess, and B. Becker. 1980. Computer-matched radiocarbon dates of floating tree-ring series. Radiocarbon 22: 260–266.Google Scholar
  25. Lal, D. and V. S. Venkatavaradan. 1970. Analysis of the causes of 14C variations in the atmosphere. In I. U. Olsson (ed.), Radiocarbon Variations and AbsoluteGoogle Scholar
  26. Chronology. Proceedings of the 12th Nobel Symposium, pp. 549–569. Wiley Interscience, New York.Google Scholar
  27. Leavitt, S. W. and A. Long. 1983. An atmospheric 13C/12C reconstruction generated through removal of climatic effects from tree-ring 13C/12C measurements. Tellus 35B: 92–102.Google Scholar
  28. Neftel, A., H. Oeschger, and H. E. Suess. 1981. Secular non-random variations of cosmogenic carbon-14 in the terrestrial atmosphere. Earth Planet. Sci. Lett. 56: 127–147.Google Scholar
  29. O’Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the Earth’s atmosphere. J. Geophys. Res. 78: 423–431.Google Scholar
  30. Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168192.Google Scholar
  31. Park, R. and S. Epstein. 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiol. 36: 133–138.CrossRefGoogle Scholar
  32. Pearson, G. W., J. R. Pilcher, and M. G. L. Baillie. 1983. High-prevision 14C measurements of Irish oaks to show the natural 14C variations of the AD time period. Radiocarbon 25: 179–186.Google Scholar
  33. Peng, T. H., W. S. Broecker, H. D.-FT yer and S. Trumbore. 1983. A deconvolution of the tree-ring based 8/3C record. J. Geophys. Res. 88: 3609–3620.Google Scholar
  34. Peng, T. H., J. C. Goddard, and W. S. Broecker. 1978. A direct comparison ofGoogle Scholar
  35. 14C and 230Th ages at Searles Lake, California. Quat. Res. 9:310–320.Google Scholar
  36. Sarmiento, J. L. and J. R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric CO2.P Nature 308: 621–624.Google Scholar
  37. Siegenthaler, U. and Th. Wenk. 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308: 624–626.CrossRefGoogle Scholar
  38. Sonnett, C. P. and H. E. Suess. 1984. Correlation of bristlecone pine ring widths with atmospheric 14C variations: a climate-sun relation. Nature 307: 141–143.CrossRefGoogle Scholar
  39. Sternberg, R. S. and P. E. Damon. 1983. Atmospheric radiocarbon: Implications for the geomagneticdipole moment. Radiocarbon 25: 239–248.Google Scholar
  40. Stuiver, M. 1970a. Evidence for the variation of atmospheric ‘4C content in the late Quaternary. In K. K. Turekian (ed.), Late Cenozoic Glacial Ages, pp. 5770: Yale University Press, New Haven, Connecticut.Google Scholar
  41. Stuiver, M. 1970b. Long-term C-14 variations. In I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium, pp. 197–214. Wiley Interscience, New York.Google Scholar
  42. Stuiver, M. 1978. Radiocarbon timescale tested against magnetic and other dating methods. Nature 273: 271–274.CrossRefGoogle Scholar
  43. Stuiver, M. 1980. Solar variability and climatic change during the current millenium. Nature 286: 868–871.CrossRefGoogle Scholar
  44. Stuiver, M. 1982. A high-prevision calibration of the AD radiocarbon timescale. Radiocarbon 24: 1–26.Google Scholar
  45. Stuiver, M. 1983. Statistics and the AD record of climatic and carbon isotopic change. Radiocarbon 25: 219–228.Google Scholar
  46. Stuiver, M., R. L. Burk, and P. D. Quay. 1984. 13C/12C ratios in tree rings andGoogle Scholar
  47. the transfer of biospheric carbon to the atmosphere. J. Geophys. Res. (in press). Stuiver, M. and H. A. Polach. 1981. Discussion: Reporting of “C data. Radiocarbon 19:355–363.Google Scholar
  48. Stuiver, M. and P. D. Quay. 1980. Changes in atmospheric “C attributed to variable Sun. Science 207: 11–19.CrossRefGoogle Scholar
  49. Stuiver, M. and P. D. Quay. 1981. Atmospheric “C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet. Sci. Lett. 53: 340362.Google Scholar
  50. Stuiver, M. and G. I. Smith. 1979. Radiocarbon ages of stratigraphic units. USGS Professional Paper 1043, pp. 69–78.Google Scholar
  51. Tans, P. P. and W. G. Mook. 1980. Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus 32:268–283. lGoogle Scholar
  52. Tauber, H. 1970. The Scandinavian varve chronology and “C dating. In I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium, pp. 173–196. Wiley Interscience, New York.Google Scholar
  53. Vogel, J. C. 1970. C-14 trends before 6000 B.P. In I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium, pp. 313–325. Wiley Interscience, New York.Google Scholar
  54. Vogel, J. C. 1980. Fractionation of the carbon isotopes during photosynthesis. InGoogle Scholar
  55. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, pp. 111–135.Google Scholar
  56. Springer-Verlag, Berlin. Vogel, J. C. 1983. “C Variations during the Upper Pleistocene. Radiocarbon 25: 213–218.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Minze Stuiver

There are no affiliations available

Personalised recommendations