Skip to main content

The Use of Observations in Calibrating and Validating Carbon Cycle Models

  • Chapter
The Changing Carbon Cycle

Abstract

To determine the most appropriate data for calibrating and validating carbon cycle models, it is first necessary to determine the aims of the modeling study. Among the main uses of such studies, we can identify in particular:

  1. 1.

    Prediction of future atmospheric CO2 concentrations (to assess climatic and biological impacts)

  2. 2.

    Reconstruction of past atmospheric CO2 concentrations (to determine the driving force when attempting to analyze past climatic records in the search for a response to changes in CO2)

  3. 3.

    Interpretation of current measurements involving the carbon cycle (to determine the major carbon fluxes)

  4. 4.

    Cross-comparisons of models with different degrees of resolution, including different dimensionality (to determine which models are most appropriate for particular studies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow, R. B. and C. D. Keeling. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from AD 1700 to 2100 as deduced from a geochemical model. In G. M. Woodwell and E. V. Pecan (eds.), Carbon and the Biosphere, CONF-729519, pp. 86–135. U.S. Atomic Energy Commission, Washington, D.C.

    Google Scholar 

  • Barnola, J. M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparison of CO, measurements by two laboratories on air bubbles in polar ice. Nature 303: 410–413.

    Article  CAS  Google Scholar 

  • Bodhaine, B. A. and J. M. Harris (eds.). 1982. Geophysical Monitoring for Climatic Change, No. 10, Summary Report 1981. U.S. Department of Commerce, NOAA/ ERL/GMCC, Boulder, Colorado.

    Google Scholar 

  • Bolin, B., and W. Bischof. 1970. Variations of the carbon dioxide content of the atmosphere in the northern hemisphere. Tellus 22: 431–442.

    Article  CAS  Google Scholar 

  • Bolin, B., A. Björkström, K. Holmen, and B. Moore. 1983. The simultaneous use of tracers for ocean circulation studies. Tellus 35B: 206–236.

    Google Scholar 

  • Bolin, B., A. Björkström, C. D. Keeling, R. B. Bacastow, and U. Siegenthaler. 1981. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 1–28. John Wiley & Sons, New York and Chichester, England.

    Google Scholar 

  • Bolin, B. and C. D. Keeling. 1963. Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68: 3899–3920.

    Google Scholar 

  • Broecker, W. S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.

    CAS  Google Scholar 

  • Broecker, W. S., T. Takahashi, H. J. Simpson, and T.-H. Peng. 1979. Fate of

    Google Scholar 

  • fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418. Callender, G. S. 1958. On the amount of carbon dioxide in the atmosphere. Tellus 10: 243–248.

    Google Scholar 

  • Deacon, E. L. 1977. Gas transfer to and across an air-water interface. Tellus 29: 363–374.

    Article  CAS  Google Scholar 

  • Deacon, E. L. 1981. Sea-air gas transfer: The wind-speed dependence. Boundary-Layer Meteorol. 21: 31–37.

    Google Scholar 

  • Deluisi, J. J. (ed.). 1981. Geophysical Monitoring for Climatic Change, No. 9, Summary Report 1980. U.S. Department of Commerce, NOAA/ERL/GMCC, Boulder, Colorado.

    Google Scholar 

  • Enting, I. G. 1983. Error analysis for parameter estimates from constrained inversion. CSIRO Division of Atmospheric Research Technical Paper No. 2. Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • Enting, I. G. 1984. Preliminary studies with a two-dimensional model using transport fields derived from a GCM. Paper presented at the CSIRO-ABM Meeting on the Scientific Application of Baseline Observations of Atmospheric Composition, November 7–9, 1984, Aspendale, Australia.

    Google Scholar 

  • Enting, I. G. 1985a. Principles of constrained inversion in the calibration of carbon cycle models. Tellus (37B: 7–27 ).

    Google Scholar 

  • Enting, I. G. 1985b. A lattice statistics model for the age distribution of air bubbles in polar ice. Nature 315: 654–655.

    Article  CAS  Google Scholar 

  • Enting, I. G. and G. I. Pearman. 1982. Description of a one-dimensional global carbon cycle model. CSIRO Division of Atmospheric Physics Technical Paper No. 42. Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • Enting, I. G. and G. I. Pearman. 1983. Refinements to a one-dimensional carbon cycle model. CSIRO Division of Atmospheric Research Technical Paper No. 3. Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • Francey, R. J. and G. D. Farquhar. 1982. An explanation of 13C/12C variations in tree rings. Nature 297: 28–31.

    Article  CAS  Google Scholar 

  • Fraser, P. J., P. Hyson, I. G. Enting, and G. I. Pearman. 1983a. Global distribution and southern hemisphere trends of atmospheric CC1,F. Nature 302: 692–695.

    Article  CAS  Google Scholar 

  • Fraser, P. J., G. I. Pearman, and P. Hyson. 1983b. The global distribution of atmospheric carbon dioxide 2. A review of provisional background observations, 1978–1980. J. Geophys. Res. 88C: 3591–3598.

    Google Scholar 

  • Frenkiel, F. N., and D. W. Goodall (eds.). 1978. Simulation Modelling of Environmental Problems, Scope 9. John Wiley & Sons, New York and Chichester, England.

    Google Scholar 

  • Fung, I., K. Prentice, E. Matthews, J. Lerner, and G. Russell. 1983. Three-dimensional tracer model study of atmospheric CO,: response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88C: 1281–1294.

    Google Scholar 

  • Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO, to the atmosphere. Ecol. Monogr. 53: 235–262.

    Google Scholar 

  • Hyson, P., P. J. Fraser, and G. I. Pearman. 1980. A two-dimensional transport simulation model for trace atmospheric constituents. J. Geophys. Res. 85C: 4443–4455.

    Google Scholar 

  • Jackson, D. D. 1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophys. J. R. Astron. Soc. 28: 97–109.

    Google Scholar 

  • Junge, C. E. and G. Czeplak. 1968. Some aspects of the seasonal variation of carbon dioxide and ozone. Tellus 20: 422–434.

    Article  CAS  Google Scholar 

  • Keeling, C. D., R. B. Bacastow, and T. P. Whorf. 1982. Measurements of the concentration of carbon dioxide at Mauna Loa observatory, Hawaii. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 377–385. Clarendon Press, Oxford, England.

    Google Scholar 

  • Keeling, C. D., W. G. Mook, and P. P. Tans. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277: 121–123.

    Article  CAS  Google Scholar 

  • Laurmann, J. A. and R. M. Rotty. 1983. Exponential growth and atmospheric carbon dioxide. J. Geophys. Res. 88C: 1295–1299.

    Google Scholar 

  • Laurmann, J. A. and J. R. Spreiter. 1983. The effects of carbon cycle model error in calculating future atmospheric carbon dioxide levels. Climatic Change 5: 145–181.

    CAS  Google Scholar 

  • Liss, P. 1983. Gas transfer: experiments and geochemical implications. In P. Liss and W. G. N. Slinn (eds.), Air-Sea Exchange of Gases and Particles. 241–298 D. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Moore, B., R. D. Boone, J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. J. Peterson, G. R. Shaver, C. J. Vörösmarty, and G. M. Woodwell. 1981. A simple model for analysis of the role of terrestrial ecosystems in the global carbon budget. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 365–385. John Wiley & Sons, New York and Chichester, England.

    Google Scholar 

  • Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Muntz, A. and E. Aubin. 1886. Recherches sur l’acide carbonique de l’air. Du Cap horn et de l’ocean Atlantique. Recherches sur la constitution chimique de l’atmosphere. Tome 3. Gaunthier-Villars, Imprimeur-Libraire, Paris.

    Google Scholar 

  • Neftel, A., E. Moor, H. Oeschger and B. Stauffer. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.

    Article  CAS  Google Scholar 

  • O’Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. J. Geophys. Res. 84: 423–431.

    Google Scholar 

  • Oeschger, H. and M. Heimann. 1983. Uncertainties of predictions of future atmospheric CO, concentrations. J. Geophys. Res. 88C: 1258–1262.

    Google Scholar 

  • Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168–192.

    Article  CAS  Google Scholar 

  • Olson, J. S. 1982. Earth’s vegetation and atmospheric carbon dioxide. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 388–398. Clarendon Press, Oxford, England.

    Google Scholar 

  • Pearman, G. I. 1980. Preliminary studies with a new global carbon cycle model. In Carbon Dioxide and Climate: Australian Research, pp. 79–91. Australian Academy of Science, Canberra.

    Google Scholar 

  • Pearman, G. I. and P. Hyson. 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. J. Geophys. Res. 85C: 4468–4474.

    Google Scholar 

  • Pearman, G. I., P. Hyson, and P. J. Fraser. 1983. The global distribution of atmospheric carbon dioxide: 1. Aspects of observations and modelling. J. Geophys. Res. 88C: 3581–3590.

    Google Scholar 

  • Peng, T. -H. and W. S. Broecker. 1984. Ocean life cycles and the atmospheric CO, content. J. Geophys. Res. 89C: 8170–8180.

    Google Scholar 

  • Peng, T.-H., W. S. Broecker, H. D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree-ring-based S”C record. J. Geophys. Res. 88C: 3609–3620.

    Google Scholar 

  • Peng, T.-H., W. S. Broecker, G. G. Mathieu, and Y.-H. Li. 1979. Radon evasion rates in the Atlantic and Pacific Oceans as determined during the GEOSECS programs. J. Geophys. Res. 84C: 2471–2486.

    Google Scholar 

  • Pittock, A. B. 1983. The atmospheric effects of nuclear war. In M. Denborough (ed.), Australia and Nuclear War, pp. 136–160. Croom Helm, Fyshwick, ACT.

    Google Scholar 

  • Prather, M. 1984. Simulations of chlorofluorocarbons with a three-dimensional model. Paper presented at the CSIRO-ABM Meeting on the Scientific Application of Baseline Observations of Atmospheric Composition, November 7–9, 1984, Aspendale, Australia.

    Google Scholar 

  • Rodgers, C. D. 1977. Statistical principles of inversion theory. In A. Deepak (ed.), Inversion Methods in Atmospheric Remote Sounding, pp. 117–134. Academic Press, New York.

    Google Scholar 

  • Rust, B. W., R. M. Rotty and G. Marland. 1979 Inferences drawn from atmospheric CO, data. J. Geophys Res. 84C: 3115–3122.

    Article  CAS  Google Scholar 

  • Schwander, J. and Stauffer, B. 1984. Age difference between polar ice and air trapped in its bubbles. Nature 311: 45–47.

    Article  CAS  Google Scholar 

  • Siegenthaler, U. 1983. Uptake of excess CO, by an outcrop-diffusion model of the ocean. J. Geophys. Res. 88C: 3599–3608.

    Google Scholar 

  • Stanhill, G. 1982. The Montsouris series of carbon dioxide abundance: An archival study of spectroscopic data. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 385–388. Clarendon Press, Oxford, England.

    Google Scholar 

  • Stokes, C. M. 1982. Atmospheric carbon dioxide abundance: An archival study of spectroscopic data. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 385–388. Clarendon Press, Oxford, England.

    Google Scholar 

  • Twomey, S. 1977. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier, Amsterdam.

    Google Scholar 

  • Viecelli, J. A., H. W. Ellsaesser, and J. E. Burt. 1981. A carbon cycle model with latitude dependence. Climatic Change 3: 281–302.

    CAS  Google Scholar 

  • World Meterological Organization. 1983. Report of the WMO (CAS) meeting of experts on the CO2 concentrations from pre-industrial times to IGY. Boulder, Colorado, June 22–25, 1983. WMO, Geneva.

    Google Scholar 

  • Wunsch, C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. Space Phys. 16: 583–620.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Enting, I.G., Pearman, G.I. (1986). The Use of Observations in Calibrating and Validating Carbon Cycle Models. In: Trabalka, J.R., Reichle, D.E. (eds) The Changing Carbon Cycle. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1915-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1915-4_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1917-8

  • Online ISBN: 978-1-4757-1915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics