Geologic Analogs: Their Value and Limitations in Carbon Dioxide Research

  • Eric T. Sundquist


The CO2 research community has recently shown much interest in the use of geologic analogs to verify climate model predictions. This application rests, of course, on the premise that both climate and atmospheric CO2 have varied in the geologic past. Climate variability is widely documented in the geologic record, and CO2 changes have recently been documented in ice cores. Although there is no other direct evidence for CO2 variations in the geologic past, the relatively small size and short residence time of the atmospheric CO2 reservoir suggest strongly that it must have been sensitive to perturbations in the larger reservoirs with which it exchanges.


Carbon Cycle Deep Ocean Carbonate Sediment Carbonate Dissolution Saturation Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacastow, R. B. and C. D. Keeling. 1981. Atmospheric carbon dioxide concentration and the observed airborne fraction. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 103–112. John Wiley and Sons, Chichester, England.Google Scholar
  2. Barron, E. J. 1983. A warm equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19: 305–338.CrossRefGoogle Scholar
  3. Bender, M. L. 1984. On the relationship between ocean chemistry and atmospheric pCO2 during the Cenozoic. In J. E. Hansen and T. Takahashi (eds.), Climate Process and Climate Sensitivity, pp. 352–359. American Geophysical Union, Geophysical Monograph 29, Washington, D.C.Google Scholar
  4. Bender, M. L. and D. W. Graham. 1978. Long term constraints on the global marine carbonate system. J. Marine Res. 36: 551–567.Google Scholar
  5. Berger, W. H. 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the Coral Reef hypothesis. Naturwissenschaften 69: 87.CrossRefGoogle Scholar
  6. Berner, R. A., A. C. Lasaga, and R. M. Garrets. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283: 641–683.CrossRefGoogle Scholar
  7. Berner, R. A., and R. Raiswell. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochim. Cosmochim. Acta 46: 1689–1705.Google Scholar
  8. Berner, W., H. Oeschger, and B. Stauffer. 1980. Information on the CO, cycle from ice core studies. Radiocarbon 22: 227–235.Google Scholar
  9. Bolin, B., A. Björkström, and K. Holmen. 1983. The simultaneous use of tracers for ocean circulation studies. Tellus 35B: 206–236.Google Scholar
  10. Broecker, W. S. 1981. Glacial to interglacial changes in ocean and atmosphere chemistry. In A. Berger (ed.), Climatic Variations and Variability: Facts and Theories, pp. 109–120. D. Reidel Publishing, Boston.Google Scholar
  11. Broecker, W. S. 1982a. Glacial to interglacial changes in ocean chemistry. Prog. Oceanography VII: 151–157.CrossRefGoogle Scholar
  12. Broecker, W. S. 1982b. Ocean chemistry during glacial time. Geochim Cosmochim. Acta 46: 1689–1705.CrossRefGoogle Scholar
  13. Broecker, W. S. and S. Broecker. 1974. Carbonate dissolution on the western flank of the East Pacific Rise. In W. W. Hay (ed.), Studies in Paleo-Oceanography, pp. 44–57. SEPM Special Publishing No. 20.Google Scholar
  14. Broecker, W. S. and T.-H Peng. 1984. The climate chemistry connection. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, pp. 327–336. American Geophysical Union, Geophysical Monograph 29, Washington, DC.Google Scholar
  15. Broecker, W. S., and T.-H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690 p.Google Scholar
  16. Broecker, W. S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.Google Scholar
  17. Broecker, W. S. and T. Takahashi. 1977. Neutralization of fossil fuel CO, by marine calcium carbonate. In N. R. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO, in the Oceans, pp. 213–241. Plenum Press, New York.Google Scholar
  18. Broecker, W. S. and T. Takahashi. 1978. The relationship between lysocline depth and in situ carbonate ion concentration. Deep Sea Res. 25: 65–95.Google Scholar
  19. Broecker, W. S. and T. Takahashi. 1984. Is there a tie between atmospheric CO2 content and ocean circulation. In J. E. Hansen and T. Takahashi (eds.), Climate Processes and Climate Sensitivity, Annals of Geophysical Monograph 29, pp. 314–326. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  20. Budyko, M. I. and A. B. Ronov. 1979. Chemical evolution of the atmosphere in the Phanerozoic. Geochem. Int. 16: 1–9.Google Scholar
  21. Craig, H. 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and sea. Tellus 9: 1–17.CrossRefGoogle Scholar
  22. Edmond, J. M. and J. M. Gieskes. 1970. On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta 34: 1261–1291.CrossRefGoogle Scholar
  23. Delmas, R. J., J. M. Ascencio, and M. Legrand. 1980. Polar ice evidence that atmospheric CO2 20,000 yr BP was 50% of present. Nature 284: 155–157.CrossRefGoogle Scholar
  24. Fischer, A. G. 1981. Climatic oscillations in the biosphere. In M. H. Nitecki (ed.), Biotic Crises in Ecological and Evolutionary Time, pp. 103–131. Academic Press, San Diego.Google Scholar
  25. Fischer, A. G. and M. A. Arthur. 1977. Secular variations in the pelagic realm. In Deep-Water Carbonate Environments, SEPM Special Publication No. 25, pp. 19–50.Google Scholar
  26. Frakes, L. A. 1979. Climates Throughout Geologic Time. Elsevier, Amsterdam. Garrets, R. M., A. Lerman, and F. T. Mackenzie. 1976. Controls of atmospheric OZ and CO, past, present, and future. Am. Sci. 64: 306–315.Google Scholar
  27. Gordon, A. L. and H. W. Taylor. 1975. Heat and salt balance within the cold waters of the world ocean. In Proceedings of Symposium on Numerical Models of Ocean Circulation, pp. 54–56. National Academy of Sciences, Washington, DC.Google Scholar
  28. Gorshkov, S. G. 1980. Ocean atlas reference tables (in Russian, with map). pp. 156. Department of Navigational Oceanography, Ministry of Defense, USSR. Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. John Wiley and Sons, New York, 351 p.Google Scholar
  29. Ingle, S. E. 1975. Solubility of calcite in the ocean. Marine Chem. 3: 301–319.CrossRefGoogle Scholar
  30. Keir, R. S. 1980. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 44: 241–252.CrossRefGoogle Scholar
  31. Keir, R. S. 1982. Dissolution of calcite in the deep-sea: theoretical prediction for the case of uniform size particles settling into a well-mixed sediment. Am. J. Sci. 282: 193–236.CrossRefGoogle Scholar
  32. Knox, F. and M. B. McElroy. 1984. Changes in atmospheric CO,: Influence of the marine biota at high latitude. J. Geophys. Res. 89: 4629–4637.CrossRefGoogle Scholar
  33. Ku, T. L., C. A. Huh, and P. S. Chen. 1980. Meridional distribution of 226 Ra in the eastern Pacific along GEOSECS cruise tracks. Earth Planet. Sci. Lett. 49: 293–308.CrossRefGoogle Scholar
  34. Li, Y.-H., T.-H. Peng, W. S. Broecker, and H. G. Ostlund. 1984. The average vertical eddy diffusion coefficient of the ocean. Tellus 36B: 212–217.Google Scholar
  35. Li,Y.-H., T. Takahashi, and W. S. Broecker. 1969. Degree of saturation of CaCO, in the oceans. J. Geophys. Res. 74: 5507–5525.Google Scholar
  36. Lyman, J. 1956. Buffer mechanism of sea water. Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  37. Mackenzie, F. T. and J. D. Pigott. 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. Lond. 138: 183–196.CrossRefGoogle Scholar
  38. McElroy, M. B. 1983. Marine biological controls on atmospheric CO2 and climate. Nature 302: 328–329.CrossRefGoogle Scholar
  39. McLean, D. M. 1978. Land floras: the major Late Phanerozoic atmospheric carbon dioxide/oxygen control. Science 200: 1060–1062.CrossRefGoogle Scholar
  40. Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Phytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in sea water at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.Google Scholar
  41. Menard, H. W. and S. M. Smith. 1966. Hypsometry of ocean basin provinces. J. Geophys. Res. 71:(18)4305–4325.Google Scholar
  42. Menzel, D. W. 1974. Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter. In E. D. Goldberg (ed.), The Sea. Volume 5: Marine Chemistry, pp. 659–678. John Wiley and Sons, New York.Google Scholar
  43. Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn. 1982. Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. Nature 295: 220–223.CrossRefGoogle Scholar
  44. Newman, M. J. and R. T. Rood. 1977. Implication of solar evolution for the Earth’s early atmosphere. Science 198: 1035–1037.CrossRefGoogle Scholar
  45. Owen, T., R. D. Cess, and V. Ramanathan. 1979. Enhanced CO, greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277: 640–642.CrossRefGoogle Scholar
  46. Peng, T.-H and W. S. Broecker. 1978. Effect of sediment mixing on the rate of calcite dissolution by fossil fuel CO2. In Sea-Sediment Interface Models, Vol. 5. No. 5, pp. 349–352. Lamont-Doherty Geological Observatory, Palisades, New York.Google Scholar
  47. Peng, T.-H, W. S. Broecker, G. Kipphut, and N. Shackleton. 1977. Benthic mixing in deep sea cores as determined by “C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO2. In N. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO2 in the Oceans, pp. 355–373. Plenum Press, New York.Google Scholar
  48. Perry, H. and H. H. Landsberg. 1977. Projected world energy consumption. In Energy and Climate, pp. 35–50. National Academy of Sciences, Washington, D.C.Google Scholar
  49. Pigott, J. D. and F. T. Mackenzie. 1979. Phanerozoic ooid diagenesis: a signature of paleo-ocean and atmospheric chemistry. Geol. Soc. Am., Spec. Pap. 11: 495–496.Google Scholar
  50. Plummer, L. N. and E. T. Sundquist. 1982. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35and salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and argonite. Geochim. Cosmochim. Acta 46: 247–258.CrossRefGoogle Scholar
  51. Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Strangenberger. 1982. Soil carbon pools and world life zone. Nature 298: 156–159.CrossRefGoogle Scholar
  52. Ronov, A. B. 1976. Volcanism, carbonate deposition, and life (Patterns of the global geochemistry of carbon). Geochem. Int. 13 (4): 172–195.Google Scholar
  53. Sagan, C. and G. Mullen. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177: 52–56.CrossRefGoogle Scholar
  54. Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:(5929)19–22.Google Scholar
  55. Sarmiento, J. L. and J. R. Toggweiler. 1984. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308: 621–624.CrossRefGoogle Scholar
  56. Shackleton, N. J. and A. Boersma. 1981. The climate of the Eocene ocean. J. Geol. Soc. Lond 138:(2)153–157.Google Scholar
  57. Shackleton, N. J., M. A. Hall, J. Line, and C. Shuxi. 1983. Carbon isotope data in core V 19–30 confirm reduced carbon dioxide concentration of the ice age atmosphere. Nature 306: 319–322.CrossRefGoogle Scholar
  58. Siegenthaler, U. and T. Wenk. 1984. Rapid atmospheric CO2 variations and ocean circulation. Nature 308: 624–625.CrossRefGoogle Scholar
  59. Sundquist, E. T., D. K. Richardson, W. S. Broecker, and T.-H. Peng. 1977. Sediment mixing and carbonate dissolution in the southeast Pacific Ocean. In N. Andersen and A. Malahoff (eds.), The Fate of Fossil Fuel CO2 in the Oceans. 429–454. Plenum Press, New York.Google Scholar
  60. Takahashi, T., W. S. Broecker, A. E. Bainbridge, and R. F. Weiss. 1980. Carbonate chemistry of the Atlantic, Pacific, and Indian Oceans. In The Results of the GEOSECS Expeditions, 1972–1978, Technical Report No. 1. CU-1–80. Lamont-Doherty Geological Observatory, Palisades, New York.Google Scholar
  61. Takahashi, T., W. S. Broecker, A. E. Bainbridge, and R. F. Weiss. 1981. Supplement to the alkalinity and total carbon dioxide concentration in the world oceans. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 159–199. John Wiley and Sons, Chichester, England.Google Scholar
  62. Tappan, H. 1968. Primary production, isotopes, extinctions, and the atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 4:(3)187–210.Google Scholar
  63. Tappan, H. and A. R. Loeblich, Jr. 1971. Geobiologic implications of fossil phytoplankton evolution and time-space distribution. In Symposium on Palynology of the Late Cretaceous and Early Tertiary. Geol. Soc. Am. Spec. Pap. 127: 247–340.Google Scholar
  64. Van Andel, T. H. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26: 187–194.CrossRefGoogle Scholar
  65. Walker, J. C. G. and P. B. Hays. 1981. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86:(C10)9776–9782.Google Scholar
  66. Wangersky, P. J. 1976. Particulate organic carbon in the Atlantic and Pacific oceans. Deep Sea Research 23: 457–465.Google Scholar
  67. Watts, J. A., Compiler. 1982. The carbon dioxide question: data sampler. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 456–460. Clarendon Press, Oxford, England.Google Scholar
  68. Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of non-ideal gas. Marine Chem. 2: 203–215.CrossRefGoogle Scholar
  69. World Energy Conference. 1980. Survey of Energy Resources. Federal Institute for Geosciences and Natural Resources, Hanover, Federal Republic of Germany.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Eric T. Sundquist

There are no affiliations available

Personalised recommendations