Skip to main content

Regulation of Acid-Base Balance

  • Chapter
  • 378 Accesses

Abstract

In a healthy man, the arterial plasma concentration of hydrogen ions, [H+]P, expressed in pH units (pH = −log [H+]) is alkaline and ranges from 7.35 to 7.45, but may range from 7.0 to 7.8 in pathological states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson PS: Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol 1983; 245: F647 - F659.

    PubMed  CAS  Google Scholar 

  2. Astrup P, Siggaard-Andersen O, Jorgensen K, Engel K: The acid-base metabolism—a new approach. Lancet 1960; 1: 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett CM, Springberg PD, Falkinburg NR: Glo-merular-tubular balance for bicarbonate in the dog. Am J Physiol 1975; 228: 98–106.

    PubMed  CAS  Google Scholar 

  4. Berliner RW, Kennedy TJ Jr, Orloff J: Factors affecting the transport of potassium and hydrogen ions by the renal tubule. Arch Intern Pharmacodyn 1954; 97: 299–312.

    CAS  Google Scholar 

  5. Clapp JR, Watson JF, Berliner RW: Osmolality, bicarbonate concentration and water reabsorption in proximal tubule of the dog nephron. Am J Physiol 1963; 205: 273–280.

    PubMed  CAS  Google Scholar 

  6. Clark WM: Topics in Physical Chemistry. Baltimore, William & Wilkins Co, 1948.

    Google Scholar 

  7. Cogan MG, Alpern RJ: Regulation of proximal bicarbonate reabsorption. Am J Physiol 1984; 247: F387 - F395.

    PubMed  CAS  Google Scholar 

  8. Davenport HW: The ABC of Acid-Base Chemistry, ed 4. Chicago, University of Chicago Press, 1958.

    Google Scholar 

  9. Dobyan DC, Bulger RE: Renal carbonic anhydrase. Am J Physiol 1982; 311: F311 - F324.

    Google Scholar 

  10. DuBose TJ Jr: Application of the disequilibrium pH method to investigate the mechanism of urinary acidification. Am J Physiol 1983; 245: F535 - F544.

    PubMed  Google Scholar 

  11. Fuller GR, MacLeod MB, Pitts RF: Influence of administration of potassium salts on the renal tubular reabsorption of bicarbonate. Am J Physiol 1955; 182: 111–118.

    PubMed  CAS  Google Scholar 

  12. Good DW, Knepper MA: Ammonia transport in the mammalian kidney. Am J Physiol 1985; 248: F459 - F471.

    PubMed  CAS  Google Scholar 

  13. Henderson LJ: Blood: A Study in General Physiology. New Haven, Conn, Yale University Press, 1928.

    Google Scholar 

  14. Knepper MA, Good DW, Burg MB: Mechanism of ammonia secretion by cortical collecting ducts of rabbits. Am J Physiol 1984; 247: F729 - F738.

    PubMed  CAS  Google Scholar 

  15. Koushanpour E: Renal Physiology: Principles and Functions, ed 1. Philadelphia, WB Saunders Co, 1976.

    Google Scholar 

  16. Kurtzman NA: Regulation of renal bicarbonate reab-sorption by extracellular volume. J Clin Invest 1970; 49: 586–595.

    Article  PubMed  CAS  Google Scholar 

  17. Lotspeich WD: Metabolic aspects of acid-base change. Science 1967; 155: 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  18. Malnic G, De Mello Aires M, Giebisch G: Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol 1971; 221: 1192–1208.

    PubMed  CAS  Google Scholar 

  19. Malnic G, De Mello Aires M, Giebisch G: Micro-puncture study of renal tubular hydrogen ion transport in the rat. Am J Physiol 1972; 222: 147–158.

    PubMed  CAS  Google Scholar 

  20. Maren TH: Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 1967; 47: 595–781.

    PubMed  CAS  Google Scholar 

  21. McKinney TD, Burg MB: Bicarbonate absorption by cortical collecting tubules in vitro. Am J Physiol 1978; 234: F141 - F145.

    PubMed  CAS  Google Scholar 

  22. Muntwyler E: Water and Electrolyte Metabolism and Acid-Base Balance. St Louis, CV Mosby Co, 1968.

    Google Scholar 

  23. Pitts RF: The renal excretion of acid. FedProc 1948; 7: 418–426.

    CAS  Google Scholar 

  24. Pitts RF: The renal regulation of acid base balance with special reference to the mechanism for acidifying the urine. I and II. Science 1945; 102: 49–54, 81–85.

    Google Scholar 

  25. Pitts RF, Alexander RS: The nature of the tubular mechanism for acidifying the urine. Am J Physiol 1945; 144: 239–254.

    CAS  Google Scholar 

  26. Pitts RF, Ayer JL, Schiess WL: The renal regulation of acid base balance in man: III. The reabsorption and excretion of bicarbonate. J Clinlnvest 1949; 28:35^4.

    Google Scholar 

  27. Pitts RF: The role of ammonia production and excretion in regulation of acid-base balance. N Engl J Med 1971; 284 (l): 32–38.

    Article  PubMed  CAS  Google Scholar 

  28. Purkerson ML, Lubowitz H, White RW, Bricker NS: On the influence of extracellular fluid volume expansion on bicarbonate reabsorption in the rat. J Clin Invest 1969; 48: 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  29. Rector FC Jr, Seldin DW, Roberts AD Jr, Smith JS: The role of plasma C02 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate. J Clin Invest 1960; 39: 1706–1721.

    Article  PubMed  CAS  Google Scholar 

  30. Rector FC Jr: Acidification of the urine, in Orloff J, Berliner RW (eds): Handbook of Physiology, Section 8, Renal Physiology. Washington DC, American Physiological Society, 1973, pp 431–454.

    Google Scholar 

  31. Severinghaus JW, Stupfel M, Bradley AF: Accuracy of blood pH and pC02 determinations. J Appl Physiol 1956a; 9: 189–196.

    PubMed  CAS  Google Scholar 

  32. Severinghaus JW, Stupfel M, Bradley AF: Variations of serum carbonic acid pK’ with pH and temperature. J Appl Physiol 1956b; 9: 197–200.

    PubMed  CAS  Google Scholar 

  33. Siggaard-Anderson O: The Acid-Base Status of the Blood, ed 2. Baltimore, William & Wilkins Co, 1964.

    Google Scholar 

  34. Singer RB, Hastings AB: Improved clinical method for estimation of acid-base balance of human blood. Medicine 1948; 27: 223–242.

    Article  PubMed  CAS  Google Scholar 

  35. Slatopolsky E, Hoffsten P, Purkerson M, Bricker NS: On the influence of extracellular fluid volume expansion and of uremia on bicarbonate reabsorption in man. J Clin Invest 1970; 49: 988–998.

    Article  PubMed  CAS  Google Scholar 

  36. Winters RW: Terminology of acid-base disorders. Ann NY Acad Sci 1966; 133: 211–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koushanpour, E., Kriz, W. (1986). Regulation of Acid-Base Balance. In: Renal Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1912-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1912-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1914-7

  • Online ISBN: 978-1-4757-1912-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics