Automatic Planning and Control of Robot Natural Motion Via Feedback

  • Daniel E. Koditschek


A feedback control strategy for the command of robot motion includes some limited automatic planning capabilities. These may be seen as sequential solution algorithms implemented by the robot arm interpreted as a mechanical analog computer. This perspective lends additional insight into the manner in which such control techniques may fail, and motivates a fresh look at requisite sensory capabilities.


Target Space Reference Trajectory Revolute Joint Task Space Rigid Body Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. I. Arnold, Mathematical Methods of Classical Mechanics Springer-Verlag, NY, 1978Google Scholar
  2. [2]
    H. Asada, T. Kanade, and I. Takeyama, “Control of a Direct Drive Arm” ASME J Dyn. Syst. 105(3):136–142., 1983.Google Scholar
  3. [3]
    R. Gellman Introduction to Matrix Analysis McGraw Hill, NY, 1965Google Scholar
  4. [4]
    G. F. Franklin and J. D. Powell, Digital Control of Dynamical Systems Addison Wesley, Reading MA, 1980.Google Scholar
  5. [5]
    E. Freund, “Fast Nonlinear Control with Arbitrary Pole-Placement for Industrial Robots and Manipulators” Int. J. Robotics Res. 1 (1): 65–78, 1982.CrossRefGoogle Scholar
  6. [6]
    N. Hogan, “Impedance Control: An Approach to Manipulation, Part I: Theory” ASME J. Dyn. Syst. Meas. and Control Vol 107, pp. 1–7, March 1985.CrossRefzbMATHGoogle Scholar
  7. [7]
    J. M. Hollerbach, “A Recursive Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation and Complexity”, in Brady, et. al. (eds) Robot Motion, pp. 73–87, MIT Press, 1982.Google Scholar
  8. [8]
    S. Jacobsen, J. Wood, D. F. Knutti, and K. B. Biggers, “The Utah/MIT Dextrous Hand: Work in Progress” Int. J. Rob. Res. Vol.3, No.4, Winter, 1984Google Scholar
  9. [9]
    O. Khatib, “Dynamic Control of Manipulators in Operational Space” Sixth IFTOMM Congress on Theory of Machines and Mechanisms, New Dehli, 1983, p. 10Google Scholar
  10. [10]
    D.E. Koditschek, “Natural Motion for Robot Arms” IEEE Proc. 23rd CDC, Las Vegas, December, 1984, pp. 733–735Google Scholar
  11. [11]
    D. E. Koditschek, “Natural Control of Robot Arms” Yale Center for Systems Science Technical Report No. 8409, Dec. 1984 (revised, Mar. 1985 ).Google Scholar
  12. [12]
    D. E. Koditschek, “Adaptive Strategies for the Control of Natural Motion” Proc. IEEE 2.4th CDC, Fort Lauderdale, Dec. 1985.Google Scholar
  13. [13]
    R. H. Lathrop, “Parallelism in Manipulator Dynamics”, Int. J. Robotics Res. 4: 2, pp. 80–102, summer1985.CrossRefGoogle Scholar
  14. [14]
    J.Y. S. Luh, M. W. Walker, and R. P. Paul, “Resolved Acceleration Control of Mechanical Manipulators” IEEE Tran. Aut. Contr. AC-25 pp. 468–474, 1980.Google Scholar
  15. [15]
    F. Miyazaki and S. Arimoto, “Sensory Feedback Based On the Artificial Potential for Robot Manipulators” Proc. 9th IFAC Budapest, Hungary, July, 1984.Google Scholar
  16. [16]
    K. S. Narendra and Y. H. Lin “Design of Stable Model Reference Adaptive Controllers”, in Applications of Adaptive Control, Narendra and Monopoli (eds.), Academic Press, 1980.Google Scholar
  17. [17]
    K. S. Narendra and L. S. Valavani, “Stable Adaptive Observers and Controllers” Proceedings of the IEEE vol. 64, no. 8, August, (1976)Google Scholar
  18. [18]
    D. E. Orin, and W. W. Schrader “Efficient Computation of the Jacobian for Robot Manipulators” Int. J. Rob. Res. 3 (4), pp. 66–75, Winter, 1984.Google Scholar
  19. [19]
    R. P. Paul, it Robot Manipulators, Mathematics, Programming, and Control MIT Press, Cambridge, MA, 1981.zbMATHGoogle Scholar
  20. [20]
    B. E. Paden and S. S. Sastry “ Geometric Interpretation of Manipulator Singularities” Memo. No. UCB/ERL M84/76, Electronics Research Laboratory, College of Engineering, UC Berkeley, Sept., 1984Google Scholar
  21. [21]
    J. Reif, “Complexity of the Mover’s Problem and Generalizations”, Proc. 20th Symposium of the Foundations of Computer Science, 1979.Google Scholar
  22. [22]
    S. Smale, “The Fundamental Theorem of Algebra and Complexity Theory” Bull. AMS. vol. 4, no. 1 pp. 1,36, Jan. (1981)Google Scholar
  23. [23]
    M. W. Hirsch and S. Smale, “On Algorithms for Solving f (x) = 0”, Comm. Pure and Appl. Math., vol. XXXII, pp 281–312 (1979)Google Scholar
  24. [24]
    J. T. Schwartz and M.Sharir. Schwartz and M.Sharir, “On the Piano Mover’s Problem. II.” NYU Courant Institute, Report No. 41, 1982.Google Scholar
  25. [25]
    Sir W. Thompson and P. G. Tait, Treatise on Natural Philosophy, University of Cambridge Press, Cambridge, 1886.Google Scholar
  26. [26]
    M. Takegaki, and S. Arimoto, “ A New Feedback Method for Dynamic Control of Manipulators” J. Dyn. Syst. Vol 102, pp.119–125, June, 1981.Google Scholar
  27. [27]
    T.J. Tarn, A. K. Bejczy, A. Isidori, Y. Chen, “Nonlinear Feedback in Robot Arm Control” Proc. 23rd IEEE Conf. on Dec. and Control, Las Vegas, Dec. 1984, pp. 736–751Google Scholar
  28. [28]
    W. A. Wolovich and H. Elliott, “A Computational Technique for Inverse Kinematics” Proceedings of the Twenty Third IEEE Conference on Decision and Control pp. 1359–1364 (1984)Google Scholar
  29. [29]
    D. E. Whitney “The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators” ASME. J. Dyn. Syst. Contr., Vol 122, pp. 303–309, Dec, 1972Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Daniel E. Koditschek

There are no affiliations available

Personalised recommendations