Skip to main content
  • 39 Accesses

Abstract

The methods for acquisition and initial analysis of radioligand binding phenomena were summarized in chapter 3. It was demonstrated that equations for linear transformations of binding data were derived assuming that a reversible bimolecular reaction occurred between ligand and receptor and that this interaction obeyed mass action law, namely *D + R ⇌ *DR. Consequently, when data transformations such as the Scatchard plot are nonlinear, when Hill coefficients (nH) do not equal 1.0, or when competition binding curves are not of normal steepness, additional complexities are suggested. Chapter 3 also provided guidelines for evaluating whether or not technical artifacts were responsible for departure of the data from that expected for a simple bimolecular reaction. Once technical artifacts have been excluded, complex binding phenomena suggest the existence of biological complexities which may provide insights into the molecular basis of receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • DeLean, A., Hancock, A.A. and Lefkowitz, R.J. (1981) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol. Pharmacol. 21:5–16.

    Google Scholar 

  • DeLean, A., Munson, P.J. and Rodbard, D. (1978) Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay and physiological dose-response curves. Am. J. Physiol. 235:E97–E102.

    PubMed  CAS  Google Scholar 

  • DeLean, A., Stadel, J.M. and Lefkowitz, R.J. (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255:7108–7117.

    CAS  Google Scholar 

  • Janin, J. (1973) The study of allosteric proteins. Prog. Biophys. Mol. Biol. 27:77–119.

    Article  Google Scholar 

  • Klotz, I.M. (1946) The application of the law of mass action to binding by proteins. Interactions with calcium. J. Am. Chem. Soc. 9:109–117.

    CAS  Google Scholar 

  • Klotz, I.M. and Hunston, D.L. (1975) Protein interactions with small molecules: Relationships between stoichimetric binding constants, site binding constants, and empirical binding parameters. J. Biol. Chem. 250:3001–3009.

    PubMed  CAS  Google Scholar 

  • Koshland, D.E., Nemethy, G. and Filmer, D. (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochem. 5:365–385.

    Article  CAS  Google Scholar 

  • Molinoff, P.B., Wolfe, B.B. and Weiland, G.A. (1981) Quantitative analysis of drug-receptor interactions II. Determination of the properties of receptor subtypes. Life Sci. 29:427–443.

    Article  PubMed  CAS  Google Scholar 

  • Munson, P.J. (1983) LIGAND: A computerized analysis of ligand binding data. Methods in Enzymology 92:543–546.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, E.A. and C. Start (1973) Regulation in Metabolism, (ed.), ch. 2. New York: John Wiley and Sons.

    Google Scholar 

  • Steinhardt, J. and Reynolds, J.A. (1969) Multiple Equilibria in Proteins, (ed.), ch. 2, pp. 10–33. New York: Academic Press.

    Google Scholar 

  • Teipel, J. and Koshland, D.E. (1969) The significance of intermediary plateau regions in enzyme saturation curves. Biochem. 8:4656–4663.

    Article  CAS  Google Scholar 

  • Wregett, K.A. and DeLean, A. (1984) The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol. Pharmacol. 26:214–227.

    Google Scholar 

Cited

  • Adair, G.S. (1925) The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol Chem. 63:529–545.

    CAS  Google Scholar 

  • Barnett, D.B., Rugg, E.L. and Nahorski, S.R. (1978) Direct evidence of two types of β-adrenoceptor binding sites in lung tissue. Nature 273:166–168.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall, N.J.M., Hulme, E.C. and Burgen, A.S.V. (1980). The character of the muscarinic receptors in different regions of the rat brain. Proc. Roy. Soc. Lond. B. 207:1–12.

    Article  CAS  Google Scholar 

  • Burgisser, E., DeLean, A. and Lefkowitz, R.J. (1982) Reciprocal modulation of agonistand antagonist binding to muscarinic cholinergic receptors by guanine nucleotide. Proc. Natl. Acad. Sci. USA 79:1732–1736.

    Article  PubMed  CAS  Google Scholar 

  • DeHaen, C. (1976) The non-stoichiometric floating receptor model for hormone sensitive adenylyl cyclase. J. Theoret. Biol. 58:383–400.

    Article  CAS  Google Scholar 

  • Feldman, H.A. (1972) Mathematical theory of complex ligand-binding systems at equilibrium: Some methods for parameter fitting. Anal. Biochem. 48:317–338.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B.B., DeLean, A., Wood, C.L., Schocken, D.D. and Lefkowitz, R.J. (1979) Alphaadrenergic receptor subtypes: Quantitative assessment by ligand binding. Life Sci. 24:1739–1746.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B.B. and Lefkowitz, R.J. (1980) An assay for alpha-adrenergic receptor subtypes using [3H]-dihydroergocryptine. Biochem. Pharmacol. 29:452–454.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S. and Cuatrecasas, P. (1976) The mobile receptor hypothesis and “cooperativity” of hormone binding. Application to insulin. Biochim. Biophys. Acta 433:482–495.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B. and Thesleff, S. (1957) A study of the “desensitization” produced by acetylcholine at the motor end plate. J. Physiol. 138:63–80.

    PubMed  CAS  Google Scholar 

  • Kent, R.S., DeLean, A. and Lefkowitz, R.J. (1980) A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharmacol. 17:14–23.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, B.V. and Caron, M.G. (1983) Agonist binding promotes a guanine nucleotide reversible increase in the apparent size of the bovine anterior pituitary dopamine receptors. J. Biol. Chem. 258:13528–13534.

    PubMed  CAS  Google Scholar 

  • Klotz, I.M. (1983) Ligand-receptor interactions: What we can and cannot learn from binding measurements. Trends in Pharmacol. Sci. 4:253–255.

    Article  CAS  Google Scholar 

  • Klotz, I.M. and Hunston, D.L. (1984) Mathematical models for ligand-receptor binding. Real sites, ghost sites. J. Biol. Chem. 259:10060–10062.

    PubMed  CAS  Google Scholar 

  • Lavin, T.N., Hoffman, B.B. and Lefkowitz, R.J. (1981) Determination of subtype selectivity of alpha-adrenergic ligands. Comparison of selective and non-selective radioligands. Mol. Pharmacol. 20:28–34.

    PubMed  CAS  Google Scholar 

  • Limbird, L.E., Gill, D.M. and Lefkowitz, R.J. (1980) Agonist-promoted coupling of the β-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 77:775–779.

    Article  PubMed  CAS  Google Scholar 

  • Michel, T.M., Hoffman, B.B., Lefkowitz, R.J. and Caron, M.G. (1981) Different sedimentation properties of agonist- and antagonist-labeled platelet alpha2-adrenergic receptors. Biochem. Biophys. Res. Commun. 100:1131–1134.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K.P., Hegstrand, L.R. and Molinoff, P.B. (1979) Simultaneous determination of beta1 and beta2-adrenergic receptors in tissues containing both subtypes. Mol. Pharmacol. 16:34–46.

    PubMed  CAS  Google Scholar 

  • Munson, P.J. and Rodbard, D. (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239.

    Article  PubMed  CAS  Google Scholar 

  • Rugg, E.L., Barnett, D.L. and Nahorski, S.R. (1978) Coexistence of beta1 and beta2 adrenoceptors in mammalian lung: evidence from direct binding studies. Mol. Pharm. 14:996–1005.

    CAS  Google Scholar 

  • Smith, S.K. and Limbird, L.E. (1981) Solubilization of human plateletα -adrenergic receptors: Evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78:4026–4030.

    Article  PubMed  CAS  Google Scholar 

  • Weiland, G.A., Minneman, K.P. and Molinoff, P.B. (1979) Fundamental difference between the molecular interactions of agonists and antagonists with the β-adrenergic receptor. Nature 281:114–117.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L.T. and Lefkowitz, R.J. (1977) Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the β-adrenergic receptor. J. Biol. Chem. 252:7207–7213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Limbird, L.E. (1986). Complex Binding Phenomena. In: Cell Surface Receptors: A Short Course on Theory and Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1882-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1882-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1884-3

  • Online ISBN: 978-1-4757-1882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics