Cerebrospinal Fluid

  • S. T. Treves
  • Keasley Welch
  • Alvin Kuruc


As in the case of radionuclide studies in the evaluation of disorders of the brain, the introduction of computed tomography has resulted in a major reduction in the use of radionuclide cisternography. This method has been used in conjunction with clinical examination and other neurological procedures in children to aid in the evaluation of hydrocephalus. Radionuclide cisternography permits the observation of the mixing and absorption of the cerebrospinal fluid (CSF). Normally after the introduction of a tracer into the lumbar subarachnoid space, the material progresses rapidly upward so that at about 6 h the basal cisterns and Sylvian fissures are outlined and at 24 h the material is over the cerebral hemispheres or in the parasagittal region10,11 (Fig. 14-1). The CSF is a secretion. Two processes, however, occur in series. There is filtration from the capillary lumen to the interstitial spaces of the choroid plexus, and that filtrate is the fluid from which the secretion is elaborated by the lining epithelium.41 The concept that CSF actually circulates in the spinal region with downward and upward currents of fluid may not be necessary, probable, or in any case the only mechanism that explains the movement of this fluid. It has been shown that with each pulse, about 0.75 ml of fluid from the cranium moves down into the spinal canal during systole and returns to the head in diastole. During this to-and-fro movement, mixing would occur and the kinetics of distribution of the tracer would be of the diffusional type and with a very high coefficient of diffusion.12,41


Shunt Flow Obstructive Hydrocephalus Basal Cistern Sylvian Fissure Anterior View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashburn WL, Harbert JC, Briner WH. Cerebrospinal fluid rhinorrhea studied with the gamma scintilliation camera. J Nucl Med 1968; 9: 523.PubMedGoogle Scholar
  2. 2.
    Bannister R, Gilford E, Kocen R. Isotope encephalography in the diagnosis of dementia due to communicating hydrocephalus. Lancet 1967; 2: 1014–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Benson DF, Lemay M, Patten DH, Rubens AB. Diagnosis of normal pressure hydrocephalus. N Engl J Med 1970; 283: 609–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Caldicott WGH, Northe JB, Simpson DA. Traumatic cerebrospinal fluid fistulas in children. J Neurosurg 1973; 38: 1–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Cutler RWP, Page L, Galicich J, Watters GV. Formation and absorption of cerebrospinal fluid in man. Brain 1968; 91: 707–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Cutler RWP, Murray JE, Moody RA. Overproduction of cerebrospinal fluid in communicating hydrocephalus. Neurology (Minneap) 1973; 23: 1–5.CrossRefGoogle Scholar
  7. 7.
    Cowan RJ, Maynard CD. Trauma to the brain and extracranial structures. Semin Nucl Med 1974; 4: 319–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Dayson H, Segal MB. Secretions and drainage of the cerebrospinal fluid. Acta Neurol Lat Am 1971; 17 (Suppl): 99.Google Scholar
  9. 9.
    Dayson H, Hollingsworth G, Seagal MB. The mechanism of drainage of the cerebrospinal fluid. Brain 1970; 93: 665.CrossRefGoogle Scholar
  10. 10.
    DiChiro G. Movement of the cerebrospinal fluid in human beings. Nature 1964; 204: 290–1.PubMedCrossRefGoogle Scholar
  11. 11.
    DiChiro GD, Hammock MK, Bleyer WA. Spinal descent of cerebrospinal fluid in man. Neurology (Minneap) 1976; 26: 1–8.CrossRefGoogle Scholar
  12. 12.
    duBoulay G, Shah SH, Currie JC, Logue V. The mechanism of hydromyelia in Chiari type I malformations. Br J Radiol 1974; 47: 579–87.CrossRefGoogle Scholar
  13. 13.
    Eisenberg HM, McComb JG, Lorenzo AV. Cerebrospinal fluid overproduction and hydrocephalus associated with a choroid plexus papilloma. J Neurosurg 1974; 40: 381–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferreira S, Jhingram SG, Johnson PC. Radionuclide cisternography for the study of arachnoid cysts: a case report. Neuroradiology 1980; 19: 167–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Front D, Minderhoud JM, Beks JW, Penning L. Leptomeningeal cysts diagnosed by isotope cisternography. J Neurol Neurosurg Psychiatry 1973; 36: 1018–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Glasaue FE, Alker GJ, Leslie EV, Nicol CF. Isotope cisternography in hydrocephalus with normal pressure. Case report and technical note. J Neurosurg 1968; 29: 555–61.CrossRefGoogle Scholar
  17. 17.
    Greitz T, Grepe A. Encephalography in the diag- 32. nosis of convexity block hydrocephalus. Acta Radiol [Diag] (Stockholm) 1971; 11: 232–42.Google Scholar
  18. 18.
    Harbert J. Haddad D, McCullough D. Quantitation of cerebrospinal fluid shunt flow. Radiology 1974; 112: 379–87.Google Scholar
  19. 19.
    Harwood-Nash DC. Fractures of the petrous and tympanic parts of the temporal bone in children: a tomographic study of 35 cases. Am J Roentgenol 1970; 110; 598–607.CrossRefGoogle Scholar
  20. 20.
    Jaffe B, Welch K, Strand R, Treves S. Cerebrospinal fluid rhinorrhea via the fossa of Rosenmuller. Laryngoscope 1976; 86: 903–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson RT. Clinicopathological aspects of the cerebrospinal fluid circulation. In: Wolsetenholme GEW, O’Connor CM, eds. CIBA Foundation sym-posium on production, circulation, and absorption of the cerebrospinal fluid. 1958; 265–78. Boston: Little Brown & Co.Google Scholar
  22. 22.
    Khan EA, Luros JT. Hydrocephalus from overproduction of cerebrospinal fluid. J Neurosurg 1952; 9: 59–67.CrossRefGoogle Scholar
  23. 23.
    Kuruc A, Treves S, Welch K, Merlino D. Radionuclide estimation of cerebral spinal fluid shunt flow: Evidence supporting an alternative theoretical model. J Neurosurg 1984; 60: 361–364.PubMedCrossRefGoogle Scholar
  24. 24.
    Lantz EJ, Forbes GS, Brown ML, Laws ER. Radiology of cerebrospinal fluid rhinorrhea. AJR 1980; 135: 1023–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Lorenzo AV, Page LK, Watters GV. Relationships 41. between cerebrospinal fluid formation, absorption, and pressure in human hydrocephalus. Brain 1970; 42. 93: 679.CrossRefGoogle Scholar
  26. 26.
    Matson DD. Hydrocephalus in a premature infant caused by papilloma of the choroid plexus: with report of surgical treatment. J Neurosurg 1953; 10: 416–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Matson DD, Crofton FDL. Papilloma of the choroid plexus in childhood, J Neurosurg 1960; 17: 1002–27.PubMedCrossRefGoogle Scholar
  28. 28.
    McCullough DC, Harbert JC, Di Chiro G, Ommaya AK. Prognostic criteria for cerebrospinal fluid shunting from isotope cisternography in communicating hydrocephalus. Neurology (Minneap) 1970; 20: 594–8.CrossRefGoogle Scholar
  29. 29.
    McKusic KA. The diagnosis of traumatic cerebrospinal rhinorrhea. J Nucl Med 1977; 18: 1234–5.Google Scholar
  30. 30.
    McKusic KA, Malmud LS, Kordela PA, Wagner HN. Radionuclide cisternography: normal values for nasal secretion of intrathecally injected In-111 DTPA. J Nucl Med 1973; 14: 933–4.Google Scholar
  31. 31.
    McLennan JE, Mickle JP, Treves S. Radionuclide cisternographic evaluation and follow-up of post-traumatic subconjunctival CSF loculation. J Neurosurg 1976; 44: 496–9.PubMedCrossRefGoogle Scholar
  32. 32.
    O’Brien MD, Haggith GW, Appleton D. Cerebrospinal fluid dynamics in dementia. Exp Brain Res 1982; 5 (suppl): 196–200.PubMedCrossRefGoogle Scholar
  33. 33.
    Patten DH, Benson DF, Diagnosis of normal-pressure hydrocephalus by RISA cisternography. J Nucl Med 1968; 9: 457–61.PubMedGoogle Scholar
  34. 34.
    Philippon J, Ancri D, Pertuiset B. Hydrocephalie a pression normale. Rev Neurol (Paris) 1971; 125: 374–85.Google Scholar
  35. 35.
    Rau H, Flas A, Horst W, Baumgartner G. Clinical observations on communicating hydrocephalus of unknown etiology. J Neurol 1974; 207: 279–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Ray BS, Peck FC. Papilloma of the choroid plexus of the lateral ventricles causing hydrocephalus in an infant. J Neurosurg 1956; 13: 405–10.Google Scholar
  37. 37.
    Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamine. J Neurosurg 1966; 25: 430–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Rudd TG, Shurtleff DB, Loeser JD, Nelp WB. Radionuclide assessment of cerebrospinal fluid shunt function in children. J Nucl Med 1973; 14: 683–6.PubMedGoogle Scholar
  39. 39.
    Shenkin HA, Crowley JN. Hydrocephalus complicating pituitary adenoma. J Neurol Neurosurg Psychiatry 1973; 36: 1063–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Tator CH, Murray S. A clinical pneumoencephalographic and radioisotopic study of normal pressure communicating hydrocephalus. Can Med Assoc J 1971; 105: 573–9.PubMedGoogle Scholar
  41. 41.
    Welch K. Selected topics relating to hydrocephalus. Exp Eye Res 1977; 25: (Suppl) 345–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Welch K, Friedman J. The cerebrospinal valve. Brain 1960; 83: 454.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • S. T. Treves
  • Keasley Welch
  • Alvin Kuruc

There are no affiliations available

Personalised recommendations