Advertisement

Classification of Fungi through Nucleic Acid Relatedness

  • Clete P. Kurtzman
Chapter
Part of the NATO ASI Series book series (NSSA, volume 102)

Abstract

The separation of species in the genera Aspergillus anti Penicillium is primarily based, as with many groups of fungi, on differences in morphology and ability to grow under various conditions. The genetic complexity of these phenotypic characteristics is generally unknown and consequently their phylogenetic significance can only be guessed. Because mutation as well as selection resulting from prolonged cultivation on common culture media sometimes provokes sufficient change in strains to allow reclassification as different species, we can begin to appreciate the ephemeral nature of the characteristics upon which we presently define taxa. Species should be viewed as populations which are reproductively isolated from other populations or species (Dobzhansky, 1976). Consequently, a species so defined becomes a product of nature and not of the taxonomist. Definition of imperfect taxa on the extent of their reproductive isolation would seem unrealistic but, as I hope to demonstrate, this is attainable with reasonable accuracy though comparisons of nucleic acid relatedness.

Keywords

Deoxyribonucleic Acid Buoyant Density Debaryomyces Hansenii Rhizopus Arrhizus Candida Maltosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADOUTTE-PANVIER, J., DAVIES, J.E., GRITZ, L.R. and LITTLEWOOD, B.S., 1980. Studies of ribosomal proteins of yeast species and their hybrids gel electrophoresis and immunoche-mical cross-reactions. Molec. Gen. Genet. 179: 273–282.Google Scholar
  2. ANDERSON, J., ANDRESINI, W. and DELIHAS, N., 1982. On the phylogeny of Phycomyces blakesleeanus nucleotide sequence of 5S ribosomal RNA. J. Biol.Chem. 257: 91149118.Google Scholar
  3. AULAKH, H.S., STRAUS, S.E. and KWON-CHUNG, K.J., 1981. Genetic relatedness of Filobasidiella neoformans (Cryptococcus neoformans) and Filobasidiella bacillispora (Cryptococcus bacillisporus) as determined by deoxyribonucleic acid base composition and sequence homology studies. Int.J. Syst. Bacteriol. 31: 97–103.Google Scholar
  4. BAHARAEEN, S., MELCHER, U. and VISHNIAC, H.S., 1983. Complementary DNA-25S ribosomal RNA hybridization: an improved method for phylogenetic studies. Can.J. Microbiol. 29: 546–551.Google Scholar
  5. BAK, A.L., 1973. DNA base composition in mycoplasma, bacteria, and yeast. Curr.Top.Microbiol. Immunol. 61: 89–149.Google Scholar
  6. BAK, A.L. and STENDERUP, A., 1969. Deoxyribonucleic acid homo-logy in yeasts. Genetic relatedness within the genus Candida. J.Gen. Microbiol. 59: 21–30.Google Scholar
  7. BAK, A.L., CHRISTIANSEN, C. and CHRISTIANSEN, G., 1972. Circular repetitive DNA in yeast. Biochim.Biophys. Acta. 269: 527–530.Google Scholar
  8. BERNARDI, G., FAURES, M., PIPERNO, G. and SLONIMSKI, P.P., 1970. Mitochondrial DNAs from respiratory-sufficient and cytoplasmic respiratory-deficient mutants of yeast. J.Mo1.Biol. 48: 23–43.Google Scholar
  9. BICKNELL, J.N. and DOUGLAS, C., 1970. Nucleic acid homologies among species of Saccharomyces. J. Bacteriol. 101: 505512.Google Scholar
  10. BLOCHWITZ, A., 1929. Die Gattung Aspergillus. Neue Spezies. Ann.Mycol. 2: 205–240.Google Scholar
  11. BRADY, R.J., 1981. A technique for preparation of spheroplasts of Rhodotorula. Abstr. Annu. Mtg., K65, p. 148. Am.Soc. Microbiol.Google Scholar
  12. BRENNER, D.J., 1973. Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int.J. Syst. Bacteriol. 23: 298–307.Google Scholar
  13. BRENNER, D.J., STEIGERWALT, A.G. and FANNING, G.R., 1972. Differentiation of Enterobacter aerogenes from Klebsiellae by deoxyribonucleic acid reassociation. Int.J. Syst. Bacteriol. 22: 193–200.Google Scholar
  14. BRITTEN, R.J. and KOHNE, D.E., 1968. Repeated sequences in DNA. Science 161: 529–540.PubMedCrossRefGoogle Scholar
  15. BROWN, W.M., GEORGE, M.Jr. and WILSON, A.C., 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA: 76: 1967–1971.Google Scholar
  16. CHRISTIANSEN, C., BAK, A.L., STENDERUP, A. and CHRISTIANSEN,G., 1971. Repetitive DNA in yeast. Nature(London) New Biol. 231: 176–177.Google Scholar
  17. COMMERFORD, S.L., 1971. Iodination of nucleic acids in vitro. Biochemistry 10: 1993–1999.Google Scholar
  18. CROSA, J.H., BRENNER, D.J. and FALKOW, S., 1973. use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo-and heteroduplexes. J. Bacterial. 115: 904–911.Google Scholar
  19. CRYER, D.R., ECCLESHALL, R. and MARMUR, J., 1975. Isolation of yeast DNA. In Methods in Cell Biology, Vol.12, Yeast Cells ( D.M. Prescott, ed.), pp. 39–44. New York: Academic Press.Google Scholar
  20. DE LEY, J., CATTOIR, H. and REYNAERTS, 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133–142.Google Scholar
  21. DENHARDT, D.T., 1966. A membrane filter technique for the detection of complementary DNA. Biochem. Biophys. Res.Commun. 23: 641–646.Google Scholar
  22. DOBZHANSKY, T., 1976. Organismic and molecular aspects of species formation. In Molecular Evolution (F.J. Ayala,ed.),pp. 95–105. Sunderland Mass: Sinauer Associates.Google Scholar
  23. DUSENBERY, R.L., 1975. Characterization of the genome of Phycomyces blakesleeanus. Biochim. Biophys. Acta 378: 363377.Google Scholar
  24. DUTTA, S.K., 1976. DNA homologies among heterothallic species of Neurospora. Mycologia 68: 388–401.Google Scholar
  25. DUTTA, S.K., SHEIKH, I., CHOPPALA, J., AULAKH, G.S. and NELSON, W.H., 1976. DNA homologies among homothallic, pseudo-homothallic and heterothallic species of Neurospora. Malec. Gen. Genet. 147: 325–330.Google Scholar
  26. EHRENBERG, L., FEDORCSAK, I. and SOLYMOSY, F., 1976. Diethyl pyrocarbonate in nucleic acid research. Prog. Nucleic Acid Res. 16: 189–262.Google Scholar
  27. FOX, G.E., STACKEBRANDT, E., HESPELL, R.B., GIBSON, J., MANILOF, J., DYER, T.A., WOLFE, R., BALCH, W.E.,TANNER; R.S., MAGRUM, L.J., ZABLEN, L.B., BALKEMORE, R., GUPTA, R., BONEN, L., LEWIS, B.J., STAHL, D.A., LEUHRSEN, K.R., CHEN, K.N. and WOESE, C.R., 1980. The phylogeny of prokaryotes. Science 209: 457–463.Google Scholar
  28. FUSON, G.B., PRICE, C.W. and PHAFF, H.J., 1979. Deoxyribonucleic acid sequence relateeness among some members of the yeast genera Hansenula. Int. J. Syst. Bacterio1. 29: 64–69.Google Scholar
  29. GILLESPIE, D. and SPIEGELMAN, S., 1965. A quantitative assay for DNA-RNA hybrids with DNA immobilised on a membrane. J. Mol. Bio1. 12: 829–842.CrossRefGoogle Scholar
  30. GREEN, B.R. and DICK, M.W., 1972. DNA base composition and the taxonomy of the Oomycetes. Can. J. Microbiol. 18: 963–968.Google Scholar
  31. GROOT; G.S.P., FLAVELL, R.A. and SANDERS, J.P.M., 1975. Sequence homology of nuclear and mitochondrial DNAs of different yeasts. Biochím. Biophys. Acta 378: 186–194.Google Scholar
  32. GUNGE, N., TAMURU, A., OZAWA, F. and SAKAGUCHI, K., 1981. Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluvveromyces lactis and the plasmidassociated killer character. J. Bacteriol. 145: 382–390.PubMedGoogle Scholar
  33. HESSELTINE, C.W., SHOTWELL, O.L., SMITH, M., ELLIS, J.J.,VANDEGRAFT, E. and SHANNON, G., 1970. Production of various aflatoxins by strains of the Aspergillus flavus series. In: “Toxic Micro-organisms” ( M. Herzberg, ed.) pp. 202–210. Washington,D. C.: U.S. Govt.Printing Office.Google Scholar
  34. HOLZSCHU, D.L., PRESLEY, H.L., MIRANDA, M. and PHAFF, H.J., 1979. Identification of Candida lusitaniae as an opportunistic yeast in humans. J. Clin. Microbiol. 10: 202–205.Google Scholar
  35. HOLZSCHU, D.L., TREDICK, J. and PHAFF, H.J., 1981. Validation of the yeast Sporidiobolus ruinenii based on its deoxyribonucleic acid relatedness to other species of the genus Sporidiobolus. Curr. Microbiol. 5: 73–76.Google Scholar
  36. HORI, H., 1976. Molecular evolution of 5S RNA. Molec. Gen. Genet. 145: 119–123.Google Scholar
  37. HUDSPETH, M.E.S., TIMBERLAKE, W.E. and GOLDBERG, R.B., 1977. DNA sequence organization in the water mold Achlya. Proc.Natl.Acad.Sci. USA 74: 4332–4336.Google Scholar
  38. JOHANNSEN, E., 1980. Hybridization studies within the genus Kluvveromvices van der Walt emend. van der Walt.Antonie van Leeuwenhoek 46: 177–189.CrossRefGoogle Scholar
  39. JOHNSON, J.L., 1973. Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23: 308–315.Google Scholar
  40. JOHNSON, J.L., 1981. Genetic characterization. In: “Manual of Methods for General Bacteriology” ( P. Gerhardt, ed.) pp. 450–472. Washington, D.C.: American Society for Microbiology.Google Scholar
  41. JOHNSON, J.L. and HARICH, B., 1983. Comparisons of procedures for determining ribosomal ribonucleic acid similarities. Curr. Micriobiol. 9: 111–120.Google Scholar
  42. KELLY, R.B., COZZRELLI, N.R., DEUTSCHER, M.P., LEHMAN, I.R. and KORNBERG, A., 1970. Enzymatic synthesis of deoxyribonucleic acids. J. Biol. Chem. 245: 39–45.Google Scholar
  43. KENNELL, D.E., 1971. Principles and practices of nucleic acid hybridization. Prog. Nucleic Acid Res. Mol. Biol. 11: 259–301.Google Scholar
  44. KOZLOWSKI, M. and STEPIEN, P.P., 1982. Restriction enzyme analysis of mitochondrial DNA of members of the genus Aspergillus as an aid in taxonomy. J. Gen. Micriobiol. 128: 471–476.Google Scholar
  45. KRUMLAUF, R. and MARZLUF, G.A., 1980. Genome organization and characterization of the repetitive and inverted repeat DNA sequences in Neurospora crassa. J. Biol. Chem. 255: 1138–1145.Google Scholar
  46. KURTZMAN, C.P., 1984a. Resolution of varietal relationships within the species Hansenula anomala, Hansenula bimundalis, and Pichia nakazawae through comparisons of DNA relatedness. Mycotaxon 19: 271–279.Google Scholar
  47. KURTZMAN, C.P., 1984b. Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 50: 209PubMedCrossRefGoogle Scholar
  48. KURTZMAN, C.P., JOHNSON, C.J. and SMILEY, M.J., 1979. Determination of conspecificity of Candida utilis and Hansenula jadinii through DNA reassociation. Mycologia 71: 844–847.CrossRefGoogle Scholar
  49. KURTZMAN, C.P., SMILEY, M.J., JOHNSON, C.J., WICKERHAM, L.J. and FUSON, G.B., 1980a. Two new and closely related heterothallic species. Pichia amylophilia and Pichia mississippiensis: Characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30: 208–216.Google Scholar
  50. KURTZMAN, C.P., SMILEY, M.J. and JOHNSON, C.J., 1980b. Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30: 503–513.Google Scholar
  51. KURTZMAN, C.P., SMILEY, M.J., JOHNSON, C.J. and HOFFMAN, M.J., 1980c. Deoxyribonucleic acid relatedness among species of Sterigmatomyces. Abstracts 5th International Symposium on Yeasts, Y-5.2.5(L), p. 246.Google Scholar
  52. KURTZMAN, C.P., SMILEY, M.J., ROBNETT, C.J., AXT, A. and WICKLOW, D.T., 1984. DNA relatedness among the agronomi-cally and industrially important fungi Aspergillus flavus A. oryzae A. parasiticus and A. sojae. Abstracts, Annual Meeting,American Society for Microbiology 0 11, p. 190.Google Scholar
  53. LIPINSKI, C., FERRO, A.J. and MILLS, D., 1976. Macromolecule synthesis in a mutant of Saccharomyces cerevisiae inhibited by S-adenosylmethionine. Mol. Gen. Genet. 144: 301306Google Scholar
  54. MANACHINI, P.L., 1979. DNA sequence similarity, cell wall mannans, and physiological characteristics in some strains of Candida utilis, Hansenula jadinii and Hansenula petersonii. Antonie van Leeuwenhoek 45: 451–463.Google Scholar
  55. MANIATIS, T., JEFFREY, A. and KLEID, D.G., 1975. Nucleotide sequence of the rightward operator of phage. Proc. Natl. Acad. Sci. USA 72: 1184–1188.Google Scholar
  56. MARMUR, J., 1961. A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3: 208–218.Google Scholar
  57. MARMUR, J. and DOTY, P., 1962. Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol. 5: 109–118Google Scholar
  58. MARMUR, J., ROWND, R. and SCHILDKRAUT, C.L., 1963. Denaturation and renaturation of DNA. Progr. Nucl. Acid. Res. Mol. Biol. 1: 231–300.Google Scholar
  59. MARTINI, A., 1973. Ibridazioni DNA DNA tra specie di lieviti del genere Kluyveromyces. Ann. Fac. Agrar. Univ. Studi Perugia 28: 1–15.Google Scholar
  60. MARTINI, A. and PHAFF, H.J., 1973. The optical determination of DNA-DNA homologies in yeasts. Ann. Micriobiol. 23: 5968.Google Scholar
  61. McARTHUR, C.R. and CLARK-WALKER, G.D., 1983. Mitochondrial DNA size diversity in the Dekkera Brettanomyces yeasts. Curr. Genet. 7: 29–35.Google Scholar
  62. McCARTHY, B.J. and CHURCH, R.B., 1970. The specificity of molecular hybridization reactions. Annu. Rev. Biochem. 39: 131–150.Google Scholar
  63. MENDONCA-HAGLER, L.C. and PHAFF, H.J., 1975. Deoxyribonucleic acid base composition and DNA DNA hybrid formation in psychrophobic and related yeasts. Int. J. Syst. Bacteriol. 25: 222–229.Google Scholar
  64. MENDONCA-HAGLER, L.C., TRAVASSOS, L.R., LLOYD, K.O. and PHAFF,H.J., 1974. Deoxyribonucleic acid base composition and hybridization studies on the human pathogen Sporothrix schenckii and Ceratocystis species. Infect. Immunity 8: 674–680.Google Scholar
  65. MEYER, S.A. and PHAFF, H.J., 1969. Deoxyribonucleic acid base composition in yeasts. J. Bacteriol. 97: 52–56.PubMedGoogle Scholar
  66. MEYER, S.A. and PHAFF, H.J., 1972. DNA base composition and DNA-DNA homology studies as tools in yeast systematics. In: “Yeasts, Models in Science and Technics” (A. KochovaKratochvilova and E. Minarik, eds.) pp.375–386. Prog. 1st Specialized Int.Symp. on Yeasts, Publ. House, Slovak Acad. Science, Bratislava, Czechoslovakia.Google Scholar
  67. MEYER, S.A., ANDERSON, K., BROWN, R.E., SMITH, M.Th., YARROW, D. MITCHELL, G. and AHEARN, D.G., 1975. Physiological and DNA characterization of Candida maltosa a hydrocarbon utilizing yeast. Arch. Micriobiol. 104: 225–231.Google Scholar
  68. MEYER, S.A., SMITH, M.T. and SIMIONE, F.P.Jr., 1978. Systematics of Hanseniaspora Zikes and Kloeckera Janke. Antonie van Leeuwenhoek 44: 79–96.PubMedCrossRefGoogle Scholar
  69. NAKASE, T. and KOMAGATA, K., 1971. Significance of DNA base composition in the classification of yeast genera Cryptococcus and Rhodotorula. J. Gen. Appl. Micriobiol. 17: 121–130.Google Scholar
  70. OJHA, M., TURLER, H. and TURIAN, G., 1977. Characterization of Allomyces genome. Biochim. Biophys. Acta 478: 377–391.Google Scholar
  71. PHAFF, H.J., MILLER, M.W. and MIRANDA, M., 1979. Hansenula alni a new.heterothallic species of yeast from exudates of alzder trees. Int. J. Syst. Bacteriol. 29: 60–63.Google Scholar
  72. PRICE, C.W., FUSON, G.B. and PHAFF, H.J., 1978. Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces and Pichia. Micriobiol. Rev. 42: 161–193.Google Scholar
  73. RAPER, K.B. and FENNELLE, D.I., 1965. The Genus Aspergillus. Baltimore: Williams Wilkins.Google Scholar
  74. RHODES, J.C. and KWON-CHUNG, K.J., 1982. A new efficient method for protoplast formation in Cryptococcus neoformans. Abstr. Annu. Mtg, F61, p.336. Am.Soc.Micriobiol.Google Scholar
  75. SAITO, K., 1943. On the scientific name of Aspergilli isolated in Japan. Nippon Jozo Zasshi 38: 412–414.Google Scholar
  76. SCHILDKRAUT, C.L., MARMUR, J. and DOTY, P., 1962. Determina-tion of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4: 430–433.Google Scholar
  77. SEGAL, E. and EYLAN, E., 1974a. Genetic relatedness of Candida albicans to asporogenous and ascosporogenous yeasts as reflected by nucleic acid homologies. Microbios 9: 25–33.Google Scholar
  78. SEGAL, E. and EYLAND, E., 1974b. Nucleic acid homologies between Candida albicans and Hansenula species. Microbios 10:133–138.Google Scholar
  79. SEGAL, E. and EYLAN, E., 1975. Nucleic acid homology studies among Candida albicans, Syringospora albicans and Leucosporidium species. Microbios 12: 111–117.PubMedGoogle Scholar
  80. SEIDLER, R.M. and MANDEL, M., 1971. Quantitative aspects of DNA renaturation: DNA based competition, state of chromosome replication, and polynucleotide homologies. J.Bacteriol. 106: 608–614.Google Scholar
  81. SMITH, D. and HALVORSON, H. 0. 1967. The isolation of DNA yeasts. In Methods in Enzymology (L. Grossman and Mol-dave, K. eds.) vol 12 part A. pp. 538–541. New York: Academic Press.Google Scholar
  82. STORCK, R. 1966. Nucleotide composition of nucleic acids of fungi. II. Deoxyribonucleic acids. J. Bacteriol. 91: 277320.Google Scholar
  83. STORCK, R. and C. J. ALEXOPOLOUS. 1970. Deboxyribonucleic acid of fungi. J. Bacteriol. Rev. 34: 126–154.Google Scholar
  84. STORCK, R., ALEXOPOLOUS, C. J. and H. J. PFAFF. 1969. Nucleo-tide composition of deboxyribonucleotide acid of some species of Cryptococcus, Rhodotorula and Sporobolomyces. J. Bacteriol. 98: 1069–1072.Google Scholar
  85. STORCK, R., NOBLES, M. K. and C. J. ALEXOPOLOUS. 1971. The nucleotide composition of deboxyribonucleotide acid of some species of Hymenochaetaceae and Polyporaceae. Mycologia 653: 38–49.CrossRefGoogle Scholar
  86. SUBIRANA, J. A. and T. DOTY. 1966. Kinetics of renaturation of renatured DNA. I. Spectrophotometric results. Biopolymers 4: 171–187.Google Scholar
  87. THOM, C. and K. B. RAPER. 1945. A manual of Aspergilli. Baltimore: Williams WilkinsGoogle Scholar
  88. TIMBERLAKE, W. E. 1978. Low repetitive DNA content in Aspergillus nidulans. Science 202: 973–975.PubMedCrossRefGoogle Scholar
  89. ULLMAN, J. S. and B. J. McCARTHY. 1973. The relationships between mismatched base pairs and the thermal stability of DNA duplexes. I. Effects of depurination and chain scission. Biochem. Biophys. Acta 294: 405–415.Google Scholar
  90. VAN DER WALT, J. P. and E. JOHANNSON. 1979. A comparison of interfertility and in vitro DNA-DNA reassociatipn as criteria for speciation in the genus Kluyveromyces. Antonie van Leeuwenhoek 45: 281–291.Google Scholar
  91. VAN ETTEN, J. L. and S. N. FREER. 1978. Simple procedure for disruption of fungal spores. Appl. Environ. Microbial. 35: 622–623.Google Scholar
  92. VILLA, V. D. and R. STORCK. 1968. Nucleotide composition of nuclear and mitochondrial deoxyribonucleotide acid of fungi. J. Bacteriol. 96: 184–190.PubMedGoogle Scholar
  93. WALKER, W. F. and W. F. DOOLITTLE. 1982. Redividing the basidiomycetes on the basis of 5S rRNA sequences. Nature 299: 723–724.PubMedCrossRefGoogle Scholar
  94. WANG, H. L. and C. W. HESSELTINE. 1982. Oriental fermented foods. In Prescott Dunn industrial Microbiology, 4th ed. ( G. Reed ed.), pp. 492–538. Westport: AVI Publishing Co.Google Scholar
  95. WICKLOW, D. T. 1984. Adaptation in wild and domesticated yellow-green aspergilli. In Toxigenic Fungi Their toxins and health hazards (H. Kurata and Y. Ueno, ed.)pp. 78–86. Amsterdam: Elsevier.Google Scholar
  96. WILLIAMS, N. P., MUKHOPADHYAY, and S. K. DUTTA. 1981. Homologies of Neurospora homothallic species using repeated and nonrepeated DNA sequences. Experientia 37: 1157–1158.Google Scholar
  97. WILLIAMSON, D. H. and D. J. FENNELL. 1975. The use of fluor-escent DNA-binding agent for detecting and separating yeasts mitochondria DNA. In Methods in cell biology, vol. 12. Yeast cells ( D. M. Presscott, ed.) pp. 335–351. New York: Academic Press.Google Scholar
  98. YARROW, D. and S. A. MEYER. 1978. Proposals for amendment of the diagnosis of the genus Candida Berkhout, nom. cony. Int. J. Syst. Bacteriol. 28: 611–615.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Clete P. Kurtzman
    • 1
  1. 1.U.S. Department of AgricultureNorthern Regional Research Center, Agricultural Research ServicePeoriaUSA

Personalised recommendations