Skip to main content

New Probes to Study Insulin Resistance in Men; Futile Cycle and Glucose Turnover

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 189))

Abstract

Insulin resistance has been measured in man by nonsteady state tracer methodology. Increase in overall glucose utilization and suppression of glucose production was measured when hyperglycemia was achieved either by infusing glucagon or glucose. With the first method, insulin resistance was assessed in obese man and in lean hypertriglyceridemic patients. With the second method, insulin resistance was assessed in lean mild type II diabetics. These methodologies can only assess deficiences in overall glucose utilization and glucose production, but cannot delineate the defect in glucose uptake by the liver. However, if a given metabolic event is essentially characteristic of only one organ, metabolic abnormalities specific to that organ can be detected in vivo provided there is a probe specific to that metabolic pathway. Therefore, in lean mild type II diabetics the liver glucose futile cycle was assessed by a double tracer method. Previously it was shown that liver glucose futile cycling is increased in diabetic dogs. In healthy control subjects in basal state and during glucose infusion, the futile cycle could not be detected, but it represented a major part of glucose metabolism in liver of type II diabetics. It appears, therefore, that most of the glucose taken up by the liver during the glucose challenge in diabetics reenters the blood stream without being oxidized or polymerized. On the basis of these studies, it was concluded that excessive hyperglycemia in the diabetics during glucose infusion is due to a decrease in irreversible glucose uptake (impaired phosphorylation and futile cycling) and to a decrease in suppression of glucose production. The relative contribution of the liver and periphery to hyperglycemia seems to be almost equivalent. The mechanism behind the increased glucose cycle activity is not clear. It may be due to a relative decrease of glycogen synthase or increase in glucose-6-phosphatase or both. These observations in mild lean type II diabetics may have implications also in some other types of diabetes, since we have observed that futile cycling is even more marked in obese type II diabetics and that it could account in part for the diabetogenic effect of growth hormone in acromegalics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Efendic, R. Luft, and A. Wajngot, Endocrine Review 5: 395–410 (1984).

    Article  CAS  Google Scholar 

  2. S. W. Shen, G.H. Reaven, and J.W. Farquhar, J. Clin. Invest. 49: 2151 (1970).

    Article  PubMed  CAS  Google Scholar 

  3. R.A. DeFronzo, J.D. Tobin, and R. Andres, Am. J. Physiol. 237: E214 (1979).

    PubMed  CAS  Google Scholar 

  4. G. Kolterman, L.J. Insel, M. Sackow, and J.H. Olefsky, J. Clin. Invest. 65: 1272 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. C.R. Kahn, Metabolism 27: 1893 (1978).

    Article  Google Scholar 

  6. E. Cerasi, and R. Luft, Acta Endocrinol. (Copenh) 55: 278–304 (1967).

    CAS  Google Scholar 

  7. E. Cerasi, Acta Endocrinol (Copenh) 55: 163 (1967).

    CAS  Google Scholar 

  8. E. Cerasi, R. Luft, Diabetes 16: 615–627 (1967).

    PubMed  CAS  Google Scholar 

  9. G.H. Reaven, and J.H. Olefsky, “Adv. Metab. Disord.” R. Levine, and R. Luft, eds., Academic Press, New York, vol. 9, 313–331 (1978).

    Google Scholar 

  10. W.K. Ward, J.C. Neard, J.B. Halter, M.A. Pfeifer, D. Porte, Diabetes Care 7: 491–504 (1980).

    Article  Google Scholar 

  11. S. Efendic, A. Wajngot, E. Cerasi, and R. Luft, Proc. Natl. Acad. Sci. 77: 7425–7429 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli, Am. J. Physiol. 236: E667 (1979).

    PubMed  CAS  Google Scholar 

  13. D.T. Finegood, G. Pacini, and R.N. Bergman, Diabetes 33: 362 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. R.C. De Bodo, R. Steele, N. Altszuler, A. Dunn, and J.S. Bishop, Recent Prog. Horm. Res. 19: 445–488 (1963).

    Google Scholar 

  15. J.S. Cowan, and G. Hetenyi, Metabolism 20: 360–373.

    Google Scholar 

  16. J. Radziuk, K.H. Norwich, and M. Vranic Am. J. Physiol 234: E84–93 (1978).

    PubMed  CAS  Google Scholar 

  17. M. Vranic, S. Morita, and G. Steiner, Diabetes 29: 169–176 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. A.D. Cherrington, M. Vranic, Metabolism 23: 729–744 (1974).

    Article  PubMed  CAS  Google Scholar 

  19. G. Steiner, S. Morita, and M. Vranic, Diabetes 29: 899–905 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. M. Perley, D.M. Kipnis, Diabetes 15: 867–874 (1966).

    PubMed  CAS  Google Scholar 

  21. R.N. Bergman, Federation Proc. 36: 265–270 (1977).

    Google Scholar 

  22. C.A. Verdonck, R.A. Rizza, J.E. Gerich, Diabetes 30: 535–537 (1981).

    Article  Google Scholar 

  23. J.D. Best, G.J. Taborsky, J.B. Halter, D. Porte Jr., Diabetes 30: 847–850 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. R. Wajngot, A. Roovete, M. Vranic, R. Luft, and S. Efendic, Proc. Natl. Acad. Sci. USA 79: 4432–4436 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. A. Wajngot, R. Luft, M. Vranic, and S. Efendic, Horm. Metab. Res. 14: 564–568 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. A. Wajngot, R. Luft, and S. Efendic, Acta Endocrinologica 104: 1–8 (1983).

    Google Scholar 

  27. J. Radziuk, T.J. McDonald, D. Rubenstein, and J. Dupre, Metabolism 28: 300–307 (1979).

    Article  PubMed  Google Scholar 

  28. C.B. Newgard, L.J. Hirsh, D.W. Foster, and D. McGarry, J. Biol. Chem. 258: 8046–8052 (1983).

    PubMed  CAS  Google Scholar 

  29. E.A. Newsholme, C. Start, “Regulation in Metabolism,” John Wiley and Sons, London (1973).

    Google Scholar 

  30. J. Katz, and R. Rognstadt, Curr. Top Cell. Regul. 64: 237–289 (1976).

    Google Scholar 

  31. J. Katz, and A. Dunn, Biochemistry 6: 1–5 (1967).

    Article  PubMed  CAS  Google Scholar 

  32. N. Altszuler, A. Barkai, C. Bjerknes, B. Gottlieb, and R. Steele, Am. J. Physiol. 229: 1662–1667 (1975).

    PubMed  CAS  Google Scholar 

  33. H.L. Lickley, G.G. Ross, and M. Vranic, Am. J. Physiol. 230: 1159–1162 (1979).

    Google Scholar 

  34. M. Vranic, H.L. Licley, F.W. Kemmer, G. Perez, G. Hetenyi, T.W. Hatton, and N. Kovacevic, “Etiology and Pathogenesis of Insulin Dependent Diabetes Mellitus,” J.M. Martin, R.H. Ehrlich, and F.J. Holland, eds., Raven Press, New York, 153–178 (1981).

    Google Scholar 

  35. B. Issekutz, Metabolism 26: 157–170 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. S. Efendic, A. Wajngot, and M. Vranic, Proc. Natl. Acad. Sci. USA (1985, in press).

    Google Scholar 

  37. H.G. Hers, Ann. Rev. Biochem. 45: 167–189 (1976).

    Google Scholar 

  38. M. El-Refai, R.N. Bergman, Am. J. Physiol 231: 1608–1619 (1976).

    PubMed  CAS  Google Scholar 

  39. C.B. Newgard, D.W. Foster, J.D. McGarry, Diabetes 33: 192–195 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. C.J. Fisher, and M.R. Stetten, Biochim. Biophys. Acta 121: 102–109 (1966).

    Article  PubMed  CAS  Google Scholar 

  41. S.V. Jakobsson, and G. Dallner, Biochim. Biophys. Acta 198: 66–75 (1968).

    Google Scholar 

  42. T.L. Hanson, and R.C. Nordlie, Biochim. Biophys. Acta 198: 66–75 (1970).

    Article  PubMed  CAS  Google Scholar 

  43. S. Karlander, A. Roovete, A. Wajngot, M. Vranic, and S. Efendic, Diabetologia 27: 294A. (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vranic, M., Wajngot, A., Efendic, S. (1985). New Probes to Study Insulin Resistance in Men; Futile Cycle and Glucose Turnover. In: Vranic, M., Hollenberg, C.H., Steiner, G. (eds) Comparison of Type I and Type II Diabetes. Advances in Experimental Medicine and Biology, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1850-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1850-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1852-2

  • Online ISBN: 978-1-4757-1850-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics