Myelin pp 147-195 | Cite as

Isolation and Characterization of Myelin

  • W. T. Norton
  • Wendy Cammer


In the second edition of the book Neurochemistry, Rossiter (1962) stated, “Since pure ‘myelin’ is not available for direct chemical analysis, the neurochemist has been compelled to deduce the constituents for myelin from such analyses as are practicable.” The available analyses were extensive. Qualitative information had been accumulating from histological staining techniques since the latter half of the 19th century. Quantitative studies on brain constituents from which information on myelin could be deduced began shortly after the turn of the century. Thus, in his chapter, “The Myelin Sheath. Metabolism of Myelin and Experimental Demyelination,” Rossiter was able to discuss myelin composition and metabolism with considerable assurance and accuracy. The direct analysis of myelin consitutents was, however, not possible until techniques were developed for isolating myelin membranes essentially free of other subcellular structures. The first of such procedures were being developed and published in the same year Neurochemistry was published. In this chapter, we will discuss isolation procedures and the composition of purified myelin obtained by these procedures.


Sciatic Nerve Myelin Basic Protein Myelin Sheath Myelin Protein Myelin Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M., and Davison, A. N., 1965, The myelin sheath, in: Neurochemistry ( C. W. M. Adams, ed.), pp. 332–400, Elsevier, Amsterdam.Google Scholar
  2. Adams, C. W. M., Davison, A. N., and Gregson, N. A., 1963, Enzyme inactivity of myelin: Histochemical and biochemical evidence, J. Neurochem. 10: 383.PubMedGoogle Scholar
  3. Adams, C. W. M., Abdul la, Y., Turner, D. R., and Bayliss, O. B., 1968, Subcellular preparation of peripheral nerve myelin, Nature (London) 220: 171.Google Scholar
  4. Adams, D. H., and Fox, M. E., 1969, The homogeneity and protein composition of rat brain myelin, Brain Res. 14: 647.PubMedGoogle Scholar
  5. Adams, D. H., and Osborne, J., 1973, A developmental study of the relationship between the protein components of rat myelin, Neurobiology 3: 91.PubMedGoogle Scholar
  6. Agrawal, H. C., and Hartman, B. K., 1980, Proteolipid protein and other proteins of myelin, in: Proteins of the Nervous System, 2nd ed. ( R. A. Bradshaw and D. M. Schneider, eds.), pp. 145–169, Raven Press, New York.Google Scholar
  7. Agrawal, H. C., and Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M., 1970, The identity of a myelin-like fraction isolated from developing brain, Biochem. J. 120: 635.Google Scholar
  8. Agrawal, H. C., Trotter, J. L., Mitchell, R. F., and Burton, R. M., 1973, Criteria for identifying a myelin-like fraction from developing brain, Biochem. J. 136: 1117.PubMedGoogle Scholar
  9. Agrawal, H. C., Hartman, B. K., Shearer, W. T., Kalmbach, S., and Margolis, F. L., 1977, Purification and immunohistochemical localization of rat brain myelin proteolipid protein, J. Neurochem. 28: 495.Google Scholar
  10. Agrawal, H. C., Schmidt, R. E., and Agrawal, D., 1982, Incorporation of 3H-palmiticacid into Po, Trans. Am. Soc. Neurochem. 13: 152.Google Scholar
  11. Autilio, L. A., 1966, Fractionation of myelin proteins, Fed. Proc. Fed. Am. Soc. Exp. Biol. 25: 764.Google Scholar
  12. Autilio, L. A., Norton, W. T., and Terry, R. D., 1964, The preparation and some properties of purified myelin from the central nervous system, J. Neurochem. 11: 17.PubMedGoogle Scholar
  13. Banik, N. L., and Davison, A. N., 1969, Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain, Biochem. J. 115: 1051.PubMedGoogle Scholar
  14. Banik, N. L., and Smith, M. E., 1977, Protein determinants of myelination in different regions of developing rat central nervous system, Biochem. J. 162: 247.PubMedGoogle Scholar
  15. Banik, N. L., Davison, A. N., Ramsey, R. B., and Scott, T., 1974, Protein composition in developing human brain myelin, Dee. Psychobiol. 7: 539.Google Scholar
  16. Barbarese, E., Braun, P. E., and Carson, J. H., 1977, Identification of prelarge and presmall basic proteins in mouse myelin and their structural relationship to large and small basic proteins, Proc. Natl. Acad. Sci. U.S.A. 74: 3360.PubMedGoogle Scholar
  17. Barbarese, E., Carson, J. H., and Braun, P. E,., 1978, Accumulation of the four myelin basic proteins in mouse brain during development, J. Neurochem. 31: 779.PubMedGoogle Scholar
  18. Baumann, N., Bourre, J. M., Jacque, C., and Harpin, M. L., 1973, Lipid composition of quaking mouse myelin: Comparison with normal mouse myelin in the adult and during development, J. Neurochem. 20: 753.PubMedGoogle Scholar
  19. Beck, C. S., Hasinoff, C. W., and Smith, M. E., 1968, L-Alanyl-ß-naphthylamidase in rat spinal cord myelin, J. Neurochem. 15: 1297.PubMedGoogle Scholar
  20. Benjamins, J. A., and Morell, P., 1978, Proteins of myelin and their metabolism, Neurochem. Res. 3: 137.PubMedGoogle Scholar
  21. Benjamins, J. A., Miller, K., and McKhann, G. M., 1973, Myelin subfractions in developing rat brain: Characterization and sulphatide metabolism, J. Neurochem. 20: 1589.PubMedGoogle Scholar
  22. Benjamins, J. A., Gray, M., and Morell, P., 1976, Metabolic relationships between myelin subfractions: Entry of proteins, J. Neurochem. 27: 571.PubMedGoogle Scholar
  23. Berlet, H. H., and Volk, B., 1980, Studies of human myelin proteins during old age, Mech. Ageing Den. 14: 211.Google Scholar
  24. Bernstein, H.-G., Weiss, J., and Luppa, H., 1978, Cytochemical investigations on the localization of 5’-nucleotidase in the rat hippocampus with special reference to synaptic regions, Histochemistry 55: 261.PubMedGoogle Scholar
  25. Bird, T. D., Farrell, D. F., and Sumi, S. M., 1978, Brain lipid composition of the shiverer mouse (genetic defect in myelin development), J. Neurochem. 31: 387.PubMedGoogle Scholar
  26. Blass, J. P., 1970, Fatty acid composition of cerebrosides in rnicrosomes and myelin of mouse brain, J. Neurochem. 17: 545.PubMedGoogle Scholar
  27. Bornstein, M. B., and Murray, M. R., 1958, Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum, J. Biophys. Biochem. Cytol. 4: 499.PubMedGoogle Scholar
  28. Bourre, J. M., Cassagne, C., Larrouquere-Regnier, S., and Darriet, D, 1977, Occurrence of alkanes in brain myelin: Comparison between normal and quaking mouse, J. Neurochem. 29: 645.PubMedGoogle Scholar
  29. Bourre, J. M., Jacque, C., Delassalle, A., Nguyen-Legross, J., Dumond, O., Lachapelle, F., Raoul, M., Alvarez, C., and Baumann, N., 1980, Density profile and basic protein measurements in the myelin range of particulate material from normal developing mouse brain and from neurological mutants (jimpy; quaking; trembler, shiverer and its mid allele) obtained by zonal centrifugation, J. Neurochem. 35: 458.PubMedGoogle Scholar
  30. Bourre, J. M., Chanez, C., Dumont, O., and Flexor, M. A., 1982, Alteration of 5’-nucleotidase and Na*,K’-ATPase in central and peripheral nervous tissue from dysmyelinating mutants (jimpy, quaking, Trembler, shiverer, and mld): Comparison with CNPase in the developing sciatic nerve from Trembler, J. Neurochem. 38: 643.PubMedGoogle Scholar
  31. Bradbury, K., and Lumsden, C. E., 1979, The chemical composition of myelin in organ cultures of rat cerebellum, J. Neurochem. 32: 145.PubMedGoogle Scholar
  32. Brante, G., 1949, Studies on lipids in the nervous system with special reference to quantitative chemical determinations and topical distribution, Acta Physiol. Scand. 18 (Suppl. 63).Google Scholar
  33. Braun, P. E., and Radin, N. S., 1969, Interactions of lipids with a membrane structural protein from myelin, Biochemistry 8: 43–10.Google Scholar
  34. Brostoff, S. W., and Eylar, E. H., 1972, The proposed amino acid sequence of the P1 protein of rabbit sciatic nerve myelin, Arch. Biochem. Biophys. 153: 590.PubMedGoogle Scholar
  35. Brostoff, S., Burnett, P., Lampert, P., and Eylar, E. H., 1972, Isolation and characterization of a protein from sciatic nerve myelin responsible for experimental allergic neuritis, Nature (London) Neu’ Biol. 235: 210.Google Scholar
  36. Brostoff, S. W., Karkhanis, Y. D., Carlo, D. J., Reuter, W., and Eylar, E. H., 1975, Isolation and partial characterization of the major proteins of rabbit sciatic nerve myelin, Brain Res. 86: 449.Google Scholar
  37. Cammer, W., 1979, Carbonic anhydrase activity in myelin from sciatic nerves of adult and young rats: Quantitation and inhibitor sensitivity, J. Neurochem. 32: 651.PubMedGoogle Scholar
  38. Cammer, W., and Norton, W. T., 1976, Disc gel electrophoresis of myelin proteins: New observations on development of the intermediate proteins (DM-20), Brain Res. 109: 643.PubMedGoogle Scholar
  39. Cammer, W., and Zimmerman, T. R., Jr., 1981, Rat brain 5’-nucleotidase: Developmental changes in myelin and activities in subcellular fractions and myelin subtractions, Dev. Brain Res. 1: 381.Google Scholar
  40. Cammer, W., and Zimmerman, ‘F. R., Jr., 1982, 5’-Nucleotidase in sciatic nerves from adult and young rats: Recovery in myelin is lower than the recoveries of 2’,3’-cyclic nucleotide-3-phosphohydrolase and carbonic anhydrase, Neurochem. Res. 7: 229.Google Scholar
  41. Cammer, W., and Zimmerman, T. R., Jr., 1983a, Distribution of myelin-associated enzymes and myelin proteins into membrane fractions from the brains of adult shiverer and control (+/+) mice, Brain Res. 265: 73.PubMedGoogle Scholar
  42. Cammer, W., and Zimmerman, T. R., Jr., 1983b, Glycerophosphate dehydrogenase, glucose-6phosphate dehydrogenase, lactate dehydrogenase and carbonic anhydrase activities in oligodendrocytes and myelin: Comparisons between species and CNS regions, Dev. Brain Res. 6: 21.Google Scholar
  43. Cammer, W., Kahn, S., and Zimmerman, T. R., Jr., 1984, Biochemical abnormalities in spinal cord myelin and CNS homogenates in heterozygotes affected by the shiverer mutation, J. Neurochem. (in press).Google Scholar
  44. Cammer, W., Fredman, T., Rose, A. L., and Norton, W. T., 1976, Brain carbonic anhydrase: Activity in isolated myelin and the effect of hexachlorophene, J. Neurochem. 27: 165.PubMedGoogle Scholar
  45. Cammer, W., Bieler, L., Fredman, T., and Norton, W. T., 1977, Quantitation of myelin carbonic anhydrase: Development and subfractionation of rat brain myelin and comparison with myelin from other species, Brain Res. 138: 17.PubMedGoogle Scholar
  46. Cammer, W., Sirota, S. R., and Norton, W. ‘1’., 1980a, The effect of reducing agents on the apparent molecular weight of the myelin Po protein and the possible identity of the Po and “Y” proteins, J. Neurochem. 34: 404.PubMedGoogle Scholar
  47. Cammer, W., Sirota, S. R., Zimmerman, T. R., Jr., and Norton, W. ‘T., 1980b, 5’-Nucleotidase in rat brain myelin, J. Neurochem. 35: 367.Google Scholar
  48. Cammer, W., Brosnan, C. F., Bloom, B. R., and Norton, W. “T., 1981, Degradation of the Po, Pi, and Pr proteins in peripheral nervous system myelin by plasmin: Implications regarding the role of macrophages in demyelinating diseases, J. Neurochem. 36: 1506.Google Scholar
  49. Cammer, W., Snyder, D. S., Zimmerman, T. R., Jr., Farooq, M., and Norton, W. T., 1982, Glycerol phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase: Activities in oligodendrocytes, neurons, astrocytes, and myelin isolated from developing rat brains, J. Neurochem. 38: 360.PubMedGoogle Scholar
  50. Carnegie, P. R., 1971, Amino acid sequence of the encephalitogenic basic protein from human myelin, Biochem. J. 123: 57.PubMedGoogle Scholar
  51. Carnegie, P. R., and Dunkley, P. R., 1975, Basic proteins of central and peripheral nervous system myelin, in: Advances in Neurochemistry, Vol. 1 ( B. W. Agranoff and M. H. Aprison, eds.), pp. 95–135, Plenum Press, New York.Google Scholar
  52. Carnegie, P. R., and Moore, W. J., 1980, Myelin basic protein, in: Proteins of the Nervous System, 2nd ed. ( R. A. Bradshaw and D. M. Schneider, eds.), pp. 119–143, Raven Press, New York.Google Scholar
  53. Carnegie, P. R., Dunkley, P. R., Kemp, B. E., and Murray, A. W., 1974, Phosphorylation of selected serine and threoninc residues in myelin basic protein by endogenous and exogenous protein kinases, Nature (London) 249: 147.Google Scholar
  54. Carnow, R. B., Carson, J. H., Hogan, E. L., and Brostoff, S. W., 1982, Myelin basic protein gene expression in normal, qk, jp and msd mice, Trans. Am. Soc. Neurochem. 13: 256.Google Scholar
  55. Carson, J. H., Nielson, M., and Barbarese, E., 1980, In vitro translation of messenger RNA for myelin basic protein, Trans. Am. Soc. Neurochem. 11: 170.Google Scholar
  56. Choi, M. U., and Suzuki, K., 1978, A cholesterol-esterifying enzyme in rat central nervous system myelin, J. Neurochem. 31: 879.PubMedGoogle Scholar
  57. Cochran, F. B., Jr., Yu, R. K., Ando, S., and Ledeen, R. W., 1981, Myelin gang liosides: An unusual pattern in the avian central nervous system, J. Neurochem. 36: 696.PubMedGoogle Scholar
  58. Cochran, F. B., Jr., Yu, R. K., and Ledeen, R. W., 1982, Myelin gangliosides in vertebrates, J. Neurochem. 39: 773.PubMedGoogle Scholar
  59. Costantino-Ceccarini, E., and Suzuki, K., 1975, Evidence for presence of UDP-galactose: ceramide galactosyltransferase in rat myelin, Brain Res. 93: 358.PubMedGoogle Scholar
  60. Costantino-Ceccarini, E., White, F., Georgieff, I., Matthieu, J.-M., and Ceccarini, C., 1982, Properties of mouse Schwann cells cultured in vitro, Trans. Am. Soc. Neurochem. 13: 114.Google Scholar
  61. Cuzner, M. L., and Davison, A. N., 1968, The lipid composition of rat brain myelin and subcellular fractions during development, Biochem. J. 106: 29.PubMedGoogle Scholar
  62. Cuzner, M. L., Davison, A. N., and Gregson, N. A., 1965, The chemical composition of vertebrate myelin and microsomes, J. Neurochem. 12: 469.PubMedGoogle Scholar
  63. Dalai, K. B., and Einstein, E. R., 1969, Biochemical maturation of the central nervous system. I. Lipid changes, Brain Res. 16: 441.Google Scholar
  64. Danks, D. M., and Matthieu, J.-M., 1979, Hypotheses regarding myelination derived from comparisons of myelin subtractions, Life Sci. 24: 1425.PubMedGoogle Scholar
  65. Darriet, D., Cassagne, C., and Bourre, J. M., 1978, Distribution pattern of alkanes in whole brain mitochondria, microsomes, synaptosomes and myelin isolated from normal mouse, Neurosci. Lett. 8: 77.PubMedGoogle Scholar
  66. Davison, A. N., and Dobbing, J., 1968, Applied Neurochemistry, F. A. Davis, Philadelphia. Davison, A. N., and Peters, A., 1970, Myelination, Charles C. Thomas, Springfield, Illinois.Google Scholar
  67. DeArmond, S. J., Deibler, G. E., Bacon, M., Kies, M. W., and Eng., L. F., 1980, A neurochemical and immunocytochemical study of P2 protein in human and bovine nervous system, J. Histochem.Cytochem. 28: 1275.PubMedGoogle Scholar
  68. Deibler, G. E., Driscoll, B. F., and Kies, M. W., 1978, Immunochemical and biochemical studies demonstrating the identity of a bovine spinal cord protein (SCP) and a basic protein of bovineGoogle Scholar
  69. DeRobertis, E., Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G., and Salganicoff, L., 1962, Cholinergie and non-cholinergie nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase, J. Neurochem. 9: 23.Google Scholar
  70. Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978, Polyphosphoinositide biosynthesis in three subtractions of rat brain myelin, J. Neurochem. 30: 1191.PubMedGoogle Scholar
  71. Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H., 1981, Rapid incorporation in vivo of intercerebrally injected 32Pi into polyphosphoinositides of three subfractions of rat brain myelin, J. Neurochem. 36: 594.PubMedGoogle Scholar
  72. Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H., 1982, Polyphosphoinositide mono-and diphosphoesterases of three subfractions of rat brain myelin, Neurochem. Res. 7: 617.PubMedGoogle Scholar
  73. DeVries, G. H., 1976, Isolation and characterization of axolemma-enriched fractions from bovine central nervous system, Neurosci. Lett. 3: 117.Google Scholar
  74. DeVries, G. H., and Norton, W. T., 1974, The fatty acid composition of sphingolipids from bovine CNS axons and myelin, J. Neurochem. 22: 251.PubMedGoogle Scholar
  75. DeVries, G. H., Norton, W. T., and Raine, C. S., 1972, Axons: Isolation from mammalian central nervous system, Science 175: 1370.Google Scholar
  76. Drummond, G. I., Iyer, N. T., and Keith, J., 1962, Hydrolysis of ribonucieoside 2’,3’-cyclic phosphates by a diesterase from brain, J. Biol. Chem. 237: 3535.Google Scholar
  77. Drummond, G. I., Eng. D. Y., and McIntosh, C. A., 1971, Ribonucleoside 2’,3’-cyclic phosphate diesterase activity and cerebroside levels in vertebrate and invertebrate nerve, Brain Res. 28: 153.PubMedGoogle Scholar
  78. Drummond, R. J., and Dean, G., 1980, Comparison of 2’,3’-cyclic nucleotide 3’-phosphodiesterase and the major component of Wolfgram protein yti’r, J. Neurochem. 35: 1155.PubMedGoogle Scholar
  79. Drummond, R. J., Hamill, E. B., and Guha, A., 1978, Purification and comparison of 2’,3’-cyclic nucleotide 3’-phosphohydrolases from bovine brain and spinal cord, J. Neurochem. 31: 871.PubMedGoogle Scholar
  80. Dunkley, P. R., and Carnegie, P. R., 1974, Amino acid sequence of the smaller basic protein from rat myelin, Biochem. J. 141: 243.PubMedGoogle Scholar
  81. Dupoucy, P., Zalc, B., Lefroit-Jolt’, M., and Gomes, D., 1979, Localization of galactosylceramide and sulfatide at the surface of the myelin sheath: An immunofluorescence study in liquid medium, Cell. Mol. Biol. 25: 269.Google Scholar
  82. Eichberg, J., and Dawson, R. M. C., 1965, Polyphosphoinositides in myelin, Biochem. J. 96: 644.PubMedGoogle Scholar
  83. Eichberg, J., Jr., Whittaker, V. P., and Dawson, R. M. C., 1964, Distribution of lipids in subcellular particles of guinea pig brain, Biochem. J. 92: 91.PubMedGoogle Scholar
  84. Einstein, E. R., Robertson, D. M., DiCaprio, J. M., and Moore, W., 1962, The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity, J. Neurochem. 9: 353.PubMedGoogle Scholar
  85. Einstein, E. R., Dalal, K. B., and Csej tey, J., 1970, Biochemical maturation of the central nervous system. II. Protein and protcolytic enzyme changes, Brain Res. 18: 35.PubMedGoogle Scholar
  86. Elam, J. S., 1974, Association of axonally transported proteins with goldfish brain myelin fraction, J. Neurochem. 23: 345.PubMedGoogle Scholar
  87. E1-Eishi, H. 1., 1967, Biochemical and histochemical studies on myelination in the chick embryo spinal cord, J. Neurochem. 14: 405.PubMedGoogle Scholar
  88. Endo, T., and Hidaka, H., 1980, Cat*-calmodulin dependent phosphorylation of myelin isolated from rabbit brain, Biochem. Biophys. Res. Comotun. 97: 553.Google Scholar
  89. Eng, L. F., and Bigbee, J. W., 1978, Immunohistochemistry of nervous system specific antigens, in: Adoances in Neurochemistry, Vol. 3 ( B. W. Agranoff and M. H. Aprison, eds.), pp. 43–98, Plenum Press, New York.Google Scholar
  90. Eng, L. F., and Noble, E. P., 1968, The maturation of rat brain myelin, Lipids 3: 157.PubMedGoogle Scholar
  91. Eng, L. F., Chao, F. C., Gerstl, B., Pratt, D., and Tavaststjerna, M. G., 1968, The maturation of human white matter myelin: Fractionation of the myelin membrane proteins, Biochemistry 7: 4455.PubMedGoogle Scholar
  92. Eto, Y., and Suzuki, K., 1971, Cholesterol ester metabolism in the brain: Properties and subcellular distribution of cholesterol-esterifying enzymes and cholesterol ester hydrolases in adult rat brain, Biochem. Biophys. Acta 239: 293.PubMedGoogle Scholar
  93. Eto, Y., and Suzuki, K., 1973, Cholesterol ester metabolism in rat brain: A cholesterol ester hydrolase specifically localized in the myelin sheath, J. Biol. Chenz. 248: 1986.Google Scholar
  94. Evans, M. J., and Finean, J. B., 1965, The lipid composition of myelin from brain and peripheral nerve, J. Neurochem. 12: 729.PubMedGoogle Scholar
  95. Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem. 21: 329.PubMedGoogle Scholar
  96. Eylar, E. H., 1973, Myelin-specific proteins, in: Proteins of the NeroousSystem (D. J. Schneider, ed.), pp. 27–44, Raven Press, New York.Google Scholar
  97. Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., and Burnett, P., 1971, Basic Ai protein of the myelin membrane, the complete amino acid sequence, J. Biol. Chem. 246: 5770.PubMedGoogle Scholar
  98. Eylar, E. H., Uyemura, K., Brostoff, S. W., Kitamura, K., Ishaque, A., and Greenfield, S., 1979, Proposed nomenclature for PNS myelin proteins, Neurochem. Res. 4: 289.PubMedGoogle Scholar
  99. Eylar, E. H., Szymanska, I., Ishaque, A., Ramwani, J., and Dubiski, S., 1980, Localization of the P2 protein in peripheral nerve myelin, J. Immunol. 124: 1086.PubMedGoogle Scholar
  100. Fagg, G. E., Lane, J. D., Neuhoff, V., and Waehneldt, T. V., 1979a, Carbonic anhydrase activity in myelin fractions from rat optic nerves, Neurosci. Lett. 12: 219.PubMedGoogle Scholar
  101. Fagg, G. E., Schipper, I I. I., and Neuhoff, V., 1979b, Myelin protein composition in the rat spinal cord in culture and in aiuo: A developmental comparison, Brain Res. 167: 251.PubMedGoogle Scholar
  102. Farooq, M., Carnmer, W., Snyder, D. S., Raine, C. S., and Norton, W. T., 1981, Properties of bovine oligodendroglia isolated by a new procedure using physiologic conditions, J. Neurochern. 36: 431.Google Scholar
  103. Figlewicz, D. A., Quarles, R. H., Johnson, D., Barbarash, G. R., and Sternberger, N. H., 1981, Biochemical demonstration of the myelin-associated glycoproteins in the peripheral nervous system, J. Neurochem. 37: 749.PubMedGoogle Scholar
  104. Filippi, D., Sciaky, M., Limozin, N., and Laurent, G., 1978, Anhydrase carbonique du système nerveux central du rat: Isolement et propriétés, Biochimie 60: 99.PubMedGoogle Scholar
  105. Finean, J. B., 1960, Electron microscopic and X-ray diffraction studies of the effects of dehydration on the structure of nerve myelin. I. Peripheral, J. Biochem. Biophys. Cytol. 8: 13.Google Scholar
  106. Fishman, M. A., Madyastha, P., and Prensky, A. L., 1971, The effect of under-nutrition on the development of myelin in the rat central nervous system, Lipids 6: 458.PubMedGoogle Scholar
  107. Fishman, M. A., Agrawal, H. C., Alexander, A., Golterman, J., Martenson, R. E., and Mitchell, R. F., 1975, Biochemical maturation of human central nervous system myelin, J. Neurochem. 24: 689.PubMedGoogle Scholar
  108. Folch, J., and Lees, M., 1951, Proteolipides, a new type of tissue lipoproteins, their isolation from brain, J. Biol. Chem. 191: 807.PubMedGoogle Scholar
  109. Folch, J., Lees, M., and Sloane-Stanley, G. H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497.PubMedGoogle Scholar
  110. Folch-Pi, J., 1955, Composition of the brain in relation to maturation, in: Biochemistry of the Developing Nervous System ( H. Waelsch, ed.), pp. 121–136, Academic Press, New York.Google Scholar
  111. Folch-Pi, J., 1963, Brain proteolipids, in: Brain Lipids and Lipoproteins and the Leucodystrophies ( J. Folch-Pi and H. Bauer, eds.), pp. 18–30, Elsevier, Amsterdam.Google Scholar
  112. Folch-Pi, J., and Stoffyn, P. S., 1972, Proteolipids from membrane systems, Ann. N. Y. Acad. Sci. 195: 86.PubMedGoogle Scholar
  113. Fong, J. W., Ledeen, R. W., Kundu, S. K., and Brostoff, S. W., 1976, Gangliosides of peripheral nerve myelin, J. Neurochem. 26: 157.PubMedGoogle Scholar
  114. Franz, T., Waehneldt, T. V., Neuhoff, V., and Wachtler, K., 1981, Central nervous system myelin proteins and glycoproteins in vertebrates: A phylogenetic study, Brain Res. 226: 245.PubMedGoogle Scholar
  115. Frey, H. J., Arstila, A. [J., Rinne, U. K., and Riekkinen, P. J., 1971, Esterases in developing CNS myelin, Brain Res. 30: 159.PubMedGoogle Scholar
  116. Frey, H. J., Riekkinen, P. J., Arstila, A. U., Pelliniemi, T., and Rinne, U. K., 1972, Maturational changes of CNS myelin with special reference to neutral proteinase activities, Brain Res. 45: 165.PubMedGoogle Scholar
  117. Friede, R. L., 1966, Topographic Brain Chemistry, Academic Press, New York.Google Scholar
  118. Friede, R. I., and Samorajski, T., 1968, Myelin formation in the sciatic nerve of the rat: A quantitative electron microscopic, histochemical and radioautographic study, J. Neuropathol. Exp. Neurol. 27: 546.PubMedGoogle Scholar
  119. Fujimoto, K., Roots, B. I., Burton, R. M., and Agrawal, H. C., 1976, Morphological and biochemical characterization of light and heavy myelin isolated from developing rat brain, Biochim. Biophys. Acta 426: 659.PubMedGoogle Scholar
  120. Gebicke-Härter, P. J., Althaus, H.-H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell culture. I. Regeneration and maintenance, Dev. Brain Res. 1: 497.Google Scholar
  121. Geren, B. B., 1954, The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos, Exp. Cell Res. 7: 558.Google Scholar
  122. Gerstl, B., Eng., L. F., Ilayman, R. B., Tavaststjerna, M. G., and Bond, P. R., 1967, On the composition of human myelin, J. Neurochem. 14: 661.PubMedGoogle Scholar
  123. Ghandour, M. S., Langley, O. K., Vincendon, G., Gombos, G., Filippi, D., Limozin, N., Dalmasso, C., and Laurent, G., 1980, Immunochemical and immunohistochemical study of carbonic anhydrase II in adult rat cerebellum: A marker for oligodendrocytcs, Neuroscience 5: 559.PubMedGoogle Scholar
  124. Gonzales-Sastre, F., 1970, The protein composition of isolated myelin, J. Neurochem. 17: 1049.Google Scholar
  125. Gonzales-Sastre, F., Eichberg, J., and Hauser, G., 1971, Metabolic pools of polyphosphoinositides in rat brain, Biochim. Biophys. Acta 248: 96.Google Scholar
  126. Gozes, I., and Richter-Landsberg, C., 1978, Identification of tubulin associated with rat brain myelin, FEBS Lett. 95: 169.PubMedGoogle Scholar
  127. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electron microscopic study of the cell fragments of homogenization and centrifugation, J. Anat. 96: 79.PubMedGoogle Scholar
  128. Greenfield, S., Norton, W. T., and Morel!, P., 1971, Quaking mouse: Isolation and characterization of myelin proteins, J. Neurochem. 18: 2119.PubMedGoogle Scholar
  129. Greenfield, S., Brostoff, S., Eylar, E. H., and Morell, P., 1973, Protein composition of myelin of the peripheral nervous system, J. Neurochem. 20: 1207.PubMedGoogle Scholar
  130. Greenfield, S., Seaton, D., Brostoff, S., and Hogan, E., 1978, The protein composition of PNS myelin in quaking mouse, Trans. Am. Soc. Neurochem. 9: 55.Google Scholar
  131. Greenfield, S., Brostoff, S. W. and Hogan, E. L., 1980, Characterization of the basic proteins from rodent peripheral nervous system myelin, J. Neurochem. 34: 453.PubMedGoogle Scholar
  132. Greenfield, S., Weise, M. J., Gantt, G., Hogan, E. L., and Brostoff, S. W., 1982, Basic proteins of rodent peripheral nerve myelin: Immunochemical identification of the 21.5K, 18.5K, 17K, 14K, and P2 proteins, J. Neurochem. 39: 1278.PubMedGoogle Scholar
  133. Gregson, N. A., and Oxberry, J. M., 1972, The composition of myelin from the mutant mouse “quaking,” J. Neurochem. 19: 1065.PubMedGoogle Scholar
  134. Guha, A., and Moore, S., 1975, Solubilization of 2’,3’-cyclic nucleotide 3’-phosphohydrolase front bovine brain without detergents, Brain Res. 89: 279.PubMedGoogle Scholar
  135. I Jack, M. H., and Helmy, F. M., 1977, Thin-layer chromatographic resolution of molecular species of ethanolamine plasmalogen quantitatively unique to myelin, J. Chromatogr. 135: 229.Google Scholar
  136. Haley, J. E., and Ledecn, R. W1r., 1979, Incorporation of axonally transported substances into myelin lipids, J. Neurochem. 32: 735.PubMedGoogle Scholar
  137. Haley, J. E., Samuels, F. G., and Ledeen, R. W., 1981, Study of myelin purity in relation to axonal contaminants, Cell. Mol. Neurobiol. 1: 175.PubMedGoogle Scholar
  138. Hallpike, J. F., 1976, Histochemistry of peripheral nerves and nerve terminals, in: The Peripheral Nerve ( D. W. Landon, ed.), pp. 605–652, Wiley, New York.Google Scholar
  139. Hartman, B. K., Agrawal, H. C., Kalmbach, S., and Shearer, W. F., 1979, A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain, J. Comp. Neurol. 188: 273.PubMedGoogle Scholar
  140. Hartman, B. K., Agrawal, H. C., Agrawal, D., and Kalmbach, S., 1982, Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes, Proc. Natl. Acad. Sri. U.S.A. 79: 4217.Google Scholar
  141. Hashim, G. A., 1980, Basic protein from central nervous system myelin, Prog. Clin. Biol. Res. 49: 79.PubMedGoogle Scholar
  142. Hauser, G., and Eichberg, J., 1973, The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain, Biochem. Biophys. Acta 326: 210.PubMedGoogle Scholar
  143. Hauser, G., Eichberg, J., and Gonzalez-Sastre, F., 1971, Regional distribution of polyphosphoinositides in rat organ, Biochirn. Biophys. Ada 248: 87.Google Scholar
  144. Hollinger, D. M., Rossiter, R. J., and Upmalis, H., 1952, Chemical studies of peripheral nerve during Wallerian degeneration, Biochem. J. 52: 652.PubMedGoogle Scholar
  145. Horrocks, I. A., 1967, Composition of myelin from peripheral and central nervous systems of the squirrel monkey, J. Lipid Res. 8: 569.PubMedGoogle Scholar
  146. Horrocks, L. A., 1968a, Composition of mouse brain myelin during development, J. Neurochem. 15: 483.PubMedGoogle Scholar
  147. Horrocks, L. A., 1968b, The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin layer chromatography, J. Lipid Res. 9: 469.PubMedGoogle Scholar
  148. Horrocks, L. A., 1973, Composition and metabolism of myelin phosphoglycerides during maturation and aging, Prog. Brain Res. 40: 383.PubMedGoogle Scholar
  149. Horrocks, L. A., Meckler, R. J., and Collins, R. I., 1966, Variations in the lipid composition of mouse brain myelin as a function of age, in: Variation in the Composition of the Nervous System ( G. B. Ansell, ed.), p. 46, Pergamon Press, Oxford.Google Scholar
  150. Hugli, T. E., Bustin, M., and Moore, S., 1973, Spectrophotometric assay of 2’,3’-cyclic nucleotide 3’-phosphohydrolase: Application to the enzyme in bovine brain, Brain Res. 58: 191.PubMedGoogle Scholar
  151. Igarashi, M., and Suzuki, K., 1977, Solubilization and characterization of the rat brain cholesterol ester hydrolase localized in the myelin sheath, J. Neurochem. 28: 729.PubMedGoogle Scholar
  152. Inoue, T., Deshmukh, D. S., and Pieringer, R. A., 1971, “The association of die galactosyl diglycerides of brain with rnyelination. I. Changes in the concentration of monogalactosyl diglyceride in the microsomal and myelin fractions of brain of rats during development. J. Biol. Chem. 246:56:88.Google Scholar
  153. Inoue, Y., Nakamura, R., Mikoshiba, K., and Tsukada, Y., 1981, Fine structure of the central myelin sheath in the myelin deficient mutant shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia, Brain Res. 219: 85.PubMedGoogle Scholar
  154. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Eylar, E. II., 1980, The Po glycoprotein of peripheral nerve myelin, Can. J. Biochem. 58: 913.PubMedGoogle Scholar
  155. Ishaque, A., Hofmann, T., and Eylar, E. H., 1982, The complete amino acid sequence of the rabbit P, protein, J. Biol. Chem. 257: 592.PubMedGoogle Scholar
  156. Kadlubowski, M., Hughes, R. A. C., and Gregson, N. A., 1980, Experimental allergic neuritis in the Lewis rat: Characterization of the activity of peripheral myelin and its major basic protein, P2, Brain Res. 184: 439.PubMedGoogle Scholar
  157. Kies, M. W., 1973, Experimental allergic encephalomyelitis, in: Biology of Brain Dysfunction, Vol. 2 ( G. E. Gaull, ed.), pp. 185–224, Plenum Press, New York.Google Scholar
  158. Kies, M. W., 1982, Myelin basic protein, Scand. J. Imnzunol. 15: 125.Google Scholar
  159. Kies, M. W., Murphy, J. B., and Alvord, E. C., 1961, Studies of the encephalitogenic factor in guinea pig central nervous system, in: Chemical Pathology of the Nervous System ( J. Folch-Pi, ed.), pp. 197–206, Pergamon Press, Oxford.Google Scholar
  160. Kies, M. W., Thompson, F. B., and Alvord, F. C., 1965, The relationship of myelin proteins to experimental allergic encephalomyelitis, Ann. N. Y. Acad. Sci. 122: 148.PubMedGoogle Scholar
  161. Kirschner, D. A., and Ganser, A. L., 1980, Compact myelin exists in the absence of basic protein in the shiverer mutant mouse, Nature (London) 283: 207.Google Scholar
  162. Kishimuto, Y., Wajda, NI., and Radin, N. S., 1968, 6-Acyl galactosyl ccramides of pig brain: Structure and fatty acid composition, J. Lipid Res. 9: 27.Google Scholar
  163. Kishimoto, Y., Agranoff, B. W., Radin, N. S., and Burton, R. M., 1969, Comparison of the fatty acids of lipids of subcellular brain fractions, J. Neurochem. 16: 397.PubMedGoogle Scholar
  164. Kitamura, K., Suzuki, M., and Uyemura, K., 1976, Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane, Biocltim. Biophys. Acta 455: 806.Google Scholar
  165. Kitamura, K., Suzuki, M., Suzuki, A., and Uyemura, K., 1980, The complete amino acid sequence of the P2 protein in bovine peripheral nerve myelin, FEBS Lett. 115: 27.PubMedGoogle Scholar
  166. Korey, S. R., Orchen, NI., and Brou, M., 1958, Studies of white matter. I. Chemical constitution and respiration of neurologlial and myelin enriched fractions of white matter, J. Neuropathol. Exp. Neurol. 17:•30.Google Scholar
  167. Koski, C. L., and Max, S. R., 1980, Comparison of the protein composition of myelin of motor and sensory nerves, J. Neurochem. 34: 449.PubMedGoogle Scholar
  168. Kozel, O., Chou, K.-H., and Jungalwala, F. B., 1980, UDP-galactose-ceramide galactosyltransferase in rat brain myelin subfractions during development, Biochein. J. 186: 959.Google Scholar
  169. Kreutzberg, G., Barron, K. D., and Schubert, P., 1978, Cytochemical localization of 5’-nucleotidase in glial plasma membranes, Brain Res. 158: 247.PubMedGoogle Scholar
  170. Kumpulainein, T., and Korhonen, L. K., 1982, Immunocytochemical localization of rarbonicanhydrase isozyme C in the central and peripheral nervous system of the mouse, J. Histochem. Cytochem. 30: 283.Google Scholar
  171. Kumpulaincn, T., and Nystrom, S. H. M., 1981, Immunohistochemital localization of carbonic anhydrase isozyme C in human brain, Brain Res. 220: 220.Google Scholar
  172. Kunishita, T., and Ledeen, R. W., 1984, Phospholipid biosynthesis in myelin: Presence of CEP: ethanolaminephosphatc cytidylyltransferase in purified myelin of rat brain, J. Neurochem. 42: 326.PubMedGoogle Scholar
  173. Kunishita. T., Morrow, C. R., Jr., and Ledeen, R. W., 1983, Detection of ethanolamine kinase and choline kinase in purdied rat brain myelin, J. Neurochem. 41 Suppl.: 548.Google Scholar
  174. Kurihara, T., and Tsukada, Y., 1967, The regional and subcellular distribution of 2’,3’-cyclic nucleotide 3’-phosphohydrolase in the central nervous system, J. Neurochem. 14: 1167.PubMedGoogle Scholar
  175. Kurihara, T., and Tsukada, Y., 1968, 2’,3’-Cyclic nucleotide-3’-phosphohydrolase in the developing chick brain and spinal cord, J. Neurochem. 15: 827.Google Scholar
  176. Kurihara, T., Nussbaum, J. L., and Mandel, P., 1970, 2’,3’-Cyclic nucleotide 3’-phosphohydrolase in brains of mutant mice with deficient myelination, J. Neurochem. 17: 933.Google Scholar
  177. Laatsch, R. H., Kies, M. W., Gordon, S., and Alvord, E. C., Jr., 1962, The encephalomyelitic activity of myelin isolated by ultracentrifugation, J. Exp. Med. 115: 777.Google Scholar
  178. Lane, J. D., and Fagg, G. E., 1980, Protein and glycoprotein composition of myelin subtractions from the developing rat optic nerve and tract, J. Neurochem. 34: 163.PubMedGoogle Scholar
  179. LeBaron, E. N., 1963,. Fhe relation of certain lipid-protein complexes of nervous tissue to neurokeratin, in: Brain Lipids and Lipoproteins and the Leurody,strophies (J. Folch-Pi and H. Bauer, eds.), pp. 31–41, Elsevier, Amsterdam.Google Scholar
  180. Ledeen, R. W., and Haley, J., 1983, Axon myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport, Brain Res. 269: 267.PubMedGoogle Scholar
  181. Ledeen, R. W., and Wu, P.-S., 1979, Evidence for the presence of CDP-choline:1,2-diradyl-sn-glycerol choline phosphotransferase and CDP-ethanolaminc1,2-diradyl-sn-glycerol ethanolaminc phosphotransferase in rat CNS myelin, 7th Int. Meeting. Int. Soc. Neurochem., Jerusalem ( Abstr. Commun. ), p. 117.Google Scholar
  182. Ledeen, R. W., and Yu, R. K., 1978, Methods for isolation and analysis of gangliosides, in: Research Methods in Neurochemistry, Vol. 4 ( N. Marks and R. Rodnight, eds.), pp. 371–410, Plenum Press, New York.Google Scholar
  183. Ledeen, R. 4b’., and Yu, R. K., 1982, Ganglioside structure, isolation and analysis, in: Methods in Enzymology, Vol. 83 ( V. Ginsburg, ed.), pp. 139–191, Academic Press, New York.Google Scholar
  184. Ledeen, R. W., Yu, R. K., and Eng. L. F., 1973, Gangliosides of human myelin: Sialosylgalactosyl-ceramide (G7) as a major component, J. Neurochem. 21: 829.PubMedGoogle Scholar
  185. Ledeen, R. W., Cochran, F. B., Jr., Yu, R. K., Samuels, F. G., and l Ialey, J. E., 1980, Gangliosides of the CNS myelin membrane, Adz,. Exp. Med. Biol. 125: 167.Google Scholar
  186. Ledeen, R. W., Skrivanek, J. A., Nunez, J., Strafani, J. R., Norton, W. T., and Farooq, M., 1981, Implications of the distribution and transport of gangliosides in the nervous system, in: Gangliosides in Neurological and Neuromuscular Function, Development, and Repair ( M. M. Rapport and A. Gorio, eds.), pp. 211–223, Raven Press, New York.Google Scholar
  187. Lees, M., and Paxman, S. A., 1974, Myelin proteins from different regions of the central nervous system, J. Neurochem. 23: 825.PubMedGoogle Scholar
  188. Levei11e, P. J., McGinnis, J. F., Maxwell, D. S., and deVellis, J., 1980, immunocytochemieal localization of glycerol-3-phosphate dehyrirogenaso in rat oligodendrocytes, Brain Res. 196: 287.Google Scholar
  189. Limozin, N., Filippi, D., Dalesasso, C., and Laurent, G., 1979, Dosage radio-immunologique des anhydrases carboniques I et II de rat, Biochimie 61: 115.PubMedGoogle Scholar
  190. Airington, C., and Waehneldt, T. V., 1981, The glycoprotein composition of peripheral nervous system myelin subtractions, J. Neurochem. 36: 1528.Google Scholar
  191. Linington, C., Waehneldt, “F. V., and Neuhoff, V., 1980, The lipid composition of light and heavy myelin subtractions isolated from rabbit sciatic nerve, Neuroscience Lett. 20: 211.Google Scholar
  192. Lisak, R. P., Pleasure, D. E., Silberherg, D. II., Manning, M. C., and Saida, T., 1981, Long term culture of bovine oligodendroglia isolated with a Percoll gradient, Brain Res. 223: 107.PubMedGoogle Scholar
  193. London, Y., 1971, Ox peripheral nerve myelin membrane: Purification and partial characterization of two basic proteins, Biochim. Biophys. Acta 249: 188.PubMedGoogle Scholar
  194. London, Y., 1972, Preparation of purified myelin from ox intradural spinal roots by rate-isopycnic zonal centrifugation, Biochim. Biophys. Acta 282: 195.PubMedGoogle Scholar
  195. MacBrinn, M. C., and O’Brien, J. S., 1969, Lipid composition of Optic nerve myelin, J. Neurochem. 16: 7.PubMedGoogle Scholar
  196. MacPherson, C. F. C., 1978, The spinal cord protein (SCP): Appraisal of physiological and immunological hypotheses of antiencephalitogenic action, Immunochemistry 15: 767.PubMedGoogle Scholar
  197. Madrid, R. E., McDermott, J. R., Pullarkat, R. K., and Wisniewski, H. M., 1979, Neuritogenic and chemical properties of guinea pig anterior and posterior root myelin, Brain Res. 171: 239.PubMedGoogle Scholar
  198. Marks, N., 1972, Myelin enzymes and protein metabolism, Adv. Exp. Med. Biol. 32: 263.PubMedGoogle Scholar
  199. Martenson, R. E., Deibler, G. E., Kies, M. W., McKneally, S. S., Shapira, R., and Kibler, R. F., 1972, Differences between the two myelin basic proteins of the rat central nervous system: A deletion in the smaller protein, Biochim. Biophys. Acta 263: 193.PubMedGoogle Scholar
  200. Matthieu, J.-M., 1978, Proteins from sciatic-nerve myelin in quaking and jimpy mice, Biochem. J. 173: 989.PubMedGoogle Scholar
  201. Matthieu, J.-M., Quarles, R. H., Brady, R. O., and Webster, H. de F., 1973, Variation of proteins, enzyme markers and gangliosides in myelin, Biochim. Biophys. Acta 329: 305.PubMedGoogle Scholar
  202. Matthieu, J.-M., Brady, R. O., and Quarles, R. H., 1974a, Anomalies of myelin-associated glycoproteins in “quaking” mice, J. Neurochem. 22: 291.PubMedGoogle Scholar
  203. Matthieu, J.-M., Quarles, R. H., Webster, H. de F., Hogan, E. L., and Brady, R. O., 1974b, Characterization of the fraction obtained from the CNS of jimpy mice by a procedure for myelin isolation, J. Neurochem. 23: 517.PubMedGoogle Scholar
  204. Matthieu, J.-M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975, [°S]Sulfate incorporation into myelin glycoproteins. II. Peripheral nervous tissue, Biochim. Biophys. Acta 392: 167.Google Scholar
  205. Matthieu, J.-M., Honegger, P., Trapp, B. D., Cohen, S. R., and Webster, H. de F., 1978, Myelination in rat brain aggregating cell cultures, Neuroscience 3: 565.PubMedGoogle Scholar
  206. Matthieu, J.-M., Waehneldt, T. V., Webster, II. de F., Beny, M., and Fagg, G. E., 1979a, Distribution of PNS myelin proteins and membrane enzymes in fractions isolated by continuous gradient zonal centrifugation, Brain Res. 170: 123.PubMedGoogle Scholar
  207. Matthieu, J.-M., Honegger, P., Favrod, P., Gautier, E., and Dolivo, M., 1979b, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell cultures, J. Neurochem. 32: 869.PubMedGoogle Scholar
  208. Matthieu, J.-M., Costantino-Ceccarini, E., Beny, M., and Reigner, J., 1980, Evidence for the association of 2’,3’-cyclic-nucleotide 3’-phospho-diesterase with myelin-related membranes in peripheral nervous system, J. Neurochem. 35: 1345.PubMedGoogle Scholar
  209. Matthieu, J.-M., Ginalski-Winkelmann, H., and Jacque, C., 1981, Similarities and dissimilarities between two myelin deficient mutant mice, shiverer and mld, Brain Res. 214: 219.PubMedGoogle Scholar
  210. McCarthy, K. D., and deVellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890.PubMedGoogle Scholar
  211. Mcllwain, D. I., 1974, Localization of the acetylcholinesterase-containing membranes in purified myelin fractions, Brain Res. 69: 182.Google Scholar
  212. McIntyre, L. J., Quarles, R. H., Webster, H. de F., and Brady, R. 0., 1978, Isolation and characterization of myelin-related membranes, J. Neurochem. 30: 991.PubMedGoogle Scholar
  213. McIntyre, L. J., Quarles, R. H., and Brady, R. 0., 1979, Lectin-binding proteins in central nervous system myelin, Biochim. J. 183: 205.Google Scholar
  214. McMillan, P. N., Williams, N. I., Kaufman, B., and Day, E. D., 1972, The isolation and biochemical characterization of three subtractions of myelin from central nervous tissue of the adult rat, J. Neurochem. 19:1839.Google Scholar
  215. McNamara, J. O., and Appel, S. H., 1977, Myelin basic protein phosphatase activity in rat brain, J. Neurochem. 29: 27.PubMedGoogle Scholar
  216. Mehl, E., 1972, Separation and characterization of myelin proteins, Adv. Exp. Med. Biol. 32:157. Mehl, E., and Wolfgram, F., 1969, Myelin types with different protein components in the same species, J. Neurochem. 16: 1091.Google Scholar
  217. Mena, E. E., Moore, B. W., Hagen, S., and Agrawal, H. C., 1981, Demonstration of five major glycoproteins in myelin and myelin subtractions, Biochem. J. 195: 525.PubMedGoogle Scholar
  218. Mezei, C., and Palmer, F. B. St. C., 1974, Hydrolytic enzyme activities in the developing chick central and peripheral nervous systems, J. Neurochem. 23: 1087.PubMedGoogle Scholar
  219. Mezei, C., Mezei, M., and Hawkins, A., 1974, 2’,3’-Cyclic AMP 3’-phosphohydrolase activity during Wallerian degeneration, J. Neurochem. 22: 457.Google Scholar
  220. Mikoshiba, K., Aoki, E., and Tsukada, Y., 1980, 2’,3’-Cyclic nucleotide-3’-phosphydrolase activity in the central nervous system of a myelin deficient mutant (shiverer) Brain Res. 192:195.Google Scholar
  221. Milek, D. J., Sarvas, H. O., Greenfield, S., Weise, M. J., and Brostoff, S. W., 1981, An immunological characterization of the basic proteins of rodent sciatic nerve myelin, Brain Res. 208:387.Google Scholar
  222. Mitzen, E. J., Barron, K. D., Koeppen, A. H., and Harris, H. W., 1974, Enzyme activity of human central nervous system myelin, Brain Res. 68:123.Google Scholar
  223. Miyamoto, E., 1975, Protein kinases in myelin of rat brain: Solubilization and characterization J. Neurochem. 24:503. Google Scholar
  224. Miyamoto, E., and Kakiuchi, S., 1974, In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3’:5’-monophosphate-dependent protein kinases in brain, J. Biol. Chem. 249: 2769.Google Scholar
  225. Miyamoto, E., and Kakiuchi, S., 1975, Phosphoprotein phosphatases for myelin basic protein in myelin and cytosol fractions of brain, Biochim. Biophys. Acta 384: 458.PubMedGoogle Scholar
  226. Mokrasch, L. C., 1971, Purification and properties of myelin, in: Methods of Neurochemistry, Vol. 1 ( R. Fried, ed.), pp. 1–29, Marcel Dekker, New York.Google Scholar
  227. Mokrasch, L. C., Bear, R. S., and Schmitt, F. 0., 1971, Myelin, Neurosci. Res. Program Bull. 9: 439.Google Scholar
  228. Morell, P., Greenfield, S., Costantino-Ceccarini, E., and Wisniewski, H., 1972, Changes in the protein composition of mouse brain myelin during development, J. Neurochem. 19:2545.Google Scholar
  229. Morell, P., Lipkind, R., and Greenfield, S., 1973, Protein composition of myelin from brain and spinal cord of several species, Brain Res. 58:510.Google Scholar
  230. Morris, S. J., Louis, C. F., and Shooter, E. M., 1971, Separation of myelin proteins on two different polyacrylamide gel systems, Neurobiology 1: 64.Google Scholar
  231. Murdock, D. D., Katona, E., and Moscarello, M. A., 1969, Preparation of myelin using the L-4 zonal centrifuge, Can. J. Biochem. 47: 818.PubMedGoogle Scholar
  232. Murray, M. R., 1965, Nervous tissue in vitro, in: Cells and Tissues in Culture (E. N. Willmer, ed.), pp. 373–455, Academic Press, New York.Google Scholar
  233. Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1973, Subcellular and submicrosomal distribution of glycolipid-synthesizing transferases in young rat brain, J. Neurochem. 20: 1419.PubMedGoogle Scholar
  234. Nishizawa, Y., Kurihara, ‘T., and Takahashi, Y., 1981, Immunohistochemical localization of 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the nervous system, Brain Res. 212: 219.Google Scholar
  235. Norton, W. T., 1971, Recent developments in the investigation of purified myelin Adv. Exp. Med. Biol. 13:327. Google Scholar
  236. Norton, W. T., 1974, Isolation of myelin from nerve tissue, in: Methods in Enzymology, Vol. 31 ( S. Fleischer and L. Packer, eds.), pp. 435–444, Academic Press, New York.Google Scholar
  237. Norton, W. T., 1977, The myelin sheath, in: Scientific Approaches to Clinical Neurology ( E. S. Goldensohn and S. H. Appel, eds.), pp. 259–298, Lea & Febiger, Philadelphia.Google Scholar
  238. Norton, W. T., 1980, Myelin enzymes: Indicators of noninsulating functions, in: Search for the Cause of Multiple Sclerosis and Other Chronic Diseases of the Central Nervous System ( A. Boese, ed.), pp. 64–75, Verlag Chemie, Weinheim.Google Scholar
  239. Norton, W. T., 1981a, Formation, structure and biochemistry of myelin, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 63–92, Little, Brown, Boston.Google Scholar
  240. Norton, W. T., 1981b, Biochemistry of myelin, in: Demyelinating Disease: Basic and Clinical Electrophysiology ( S. G. Waxman and J. M. Ritchie, eds.), pp. 93–121, Raven Press, New York.Google Scholar
  241. Norton, W. T., 1983, Recent advances in the neurobiology of oligodendroglia, in: Advances in Cellular Neurobiology Vol. 4 (S. Federoff and L. Hertz, eds.), pp. 3–55, Academic Press, New York (in press). Norton, W. T., and Autilio, L. A., 1965, I-he chemical composition of bovine CNS tnyelin, Ann. N. Y. Acad. Sri. 122:77.Google Scholar
  242. Norton, W. T., and Autilio, L. A., 1966, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213.PubMedGoogle Scholar
  243. Norton, W. T., and Brotz, M., 1963, New galactolipids of brain: A monoalkylmonoacylglyceryl-galactoside and cerebroside fatty acid esters, Biochem. Biophys. Res. Commun. 3: 198.Google Scholar
  244. Norton, W. T., and Brotz, M., 1967, The glyceryl galactoside derivatives of brain, Fed. Proc. Fed. AM. Soc. Exp. Biol. 26: 675.Google Scholar
  245. Norton, W. T., and Poduslo, S. E., 1973a, Myelination in rat brain: Method of myelin isolation, J. Neurochem. 21: 749.PubMedGoogle Scholar
  246. Norton, W. T., and Poduslo, S. E., 1973b, Myelination in rat brain: Changes in myelin composition during brain maturation, J. Neurochem. 21: 759.PubMedGoogle Scholar
  247. Norton, W. T., and Poduslo, S. E., 1982, Biochemical studies of metachromatic leukodystrophy in three siblings, Acta Neuropathol. (Berlin) 57: 188.Google Scholar
  248. Norton, W. T., Poduslo, S. E., and Suzuki, K., 1966, Subacute sclerosing leukoencephalitis. II. Chemical studies including abnormal myelin and an abnormal ganglioside pattern, J. Neuropathol. Exp. Neurol. 25: 582.PubMedGoogle Scholar
  249. Norton, W. T., Farooq, M., Fields, K. L., and Raine, C. S., 1983, The long term culture of bulk-isolated bovine oligodendroglia from adult brain, Brain Res. 270: 295.PubMedGoogle Scholar
  250. Nussbaum, J. L., Beith, R., and Mandel, P., 1963, Phosphatides in myelin sheaths and repartition of sphingomyelin in the brain (rat), Nature (London) 198: 586.Google Scholar
  251. O’Brien, J. S., and Sampson, E. L., 1965a, Lipid composition of the normal human brain: Gray matter, white matter and myelin, J. Lipid Res. 6: 537.PubMedGoogle Scholar
  252. O’Brien, J. S., and Sampson, E. L., 1965b, Fatty acid and fatty aldehyde composition of the major lipids in normal human gray matter, white matter and myelin, J. Lipid Res. 6: 545.PubMedGoogle Scholar
  253. O’Brien, J. S., Sampson, E. I., and Stern, M. B., 1967, Lipid composition of myelin from the peripheral nervous system: Intradural spinal roots, J. Neurochem. 14: 357.PubMedGoogle Scholar
  254. Olafson, R. W., Drumtnond, G. I., and Lee, J. F., 1969, Studies on 2’,3’-cyclic nucleotide-3’phosphohydrolase from brain, Can. J. Biochem. 47: 961.PubMedGoogle Scholar
  255. Oulton, M. R., and Mezei, C., 1976, Characterization of myelin of chick sciatic nerve during development, J. Lipid Res. 17: 167.PubMedGoogle Scholar
  256. Page, I. H., 1937, Chemistry of the Brain, Charles C Thomas, Springfield, Illinois.Google Scholar
  257. Parthe, V., 1981, Histochemical localization of carbonic anhydrase in vertebrate nervous tissue, J. Neurosci. Res. 6: 119.PubMedGoogle Scholar
  258. Petrali, E. H., and Sulakhe, P. V., 1979, Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of peripheral nerve myelin proteins, Can. J. Physiol. Pharma ol. 57: 1200.Google Scholar
  259. Pfeiffer, S. E., 1984, Oligodendrocyte development in culture systems, in: Advances in Neurochemistry Vol. 5, Oligodendroglia (W. T. Norton, ed.) Chapter 7, Plenum Press, New York (in press). Pfeiffer, S. E., and Wechsler, W., 1972, Biochemically differentiated neoplastic clone of Schwann cells, Proc. Natl. Acad. Sei. U.S.A. 69:2885.Google Scholar
  260. Pieringer, J., Rao, G. S., Mandel, P., and Pieringer, R. A., 1977, The association of the sulphogalactosylglycerolipid of rat brain with myelination, Biochem. J. 166: 421.PubMedGoogle Scholar
  261. Pieringer, R. A., Deshmukh, D. S., and Flynn, T. J., 1973, The association of the galactosyldiglycerides of nerve tissue with myelination, Prog. Brain. Res. 40: 397.Google Scholar
  262. Pleasure, D., Kim, S. U., and Silberberg, D., 1984, In vitro studies of oligodendroglial lipid metabolism, in: Advances in Neurochemistry, Vol. 5, Oligodendroglia (W. T. Norton, ed.), Chapter 5, Plenum Press, New York.Google Scholar
  263. Poduslo, J. F., 1981, Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin, J. Neurochem. 36: 1924.PubMedGoogle Scholar
  264. Poduslo, J. F., Everly, J. L., and Quarles, R. H., 1977„N low molecular weight glycoprotein associated with isolated myelin: Distinction from myelin proteolipid protein, J. Neurochem. 28: 977.Google Scholar
  265. Poduslo, J. F., Harman, J. L., and McFarlin, D. E., 1980, Lectin receptors in central nervous system myelin, J. Neurochem. 34: 1733.PubMedGoogle Scholar
  266. Quarles, R. H., 1979, Glycoproteins in myelin and myelin-related membranes, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 209–233, Plenum Press, New York.Google Scholar
  267. Quarles, R. H., 1980, Glycoproteins from central and peripheral myelin, Prog. Clin. Biol. Res. 49: 55.PubMedGoogle Scholar
  268. Quarles, R. H., and Pasnak, C. F., 1977, A rapid procedure for selectively isolating the major glycoprotein from purified rat brain myelin, Biochem. J. 163: 635.PubMedGoogle Scholar
  269. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973a, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177.PubMedGoogle Scholar
  270. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973b, Myelin-associated glycoprotein: A developmental change, Brain Res. 58: 506.PubMedGoogle Scholar
  271. Quarles, R. H., McIntyre, L. J., and Pasnak, C. F., 1979, Lectin-binding proteins in central nervous system myelin, Biochem. J. 183: 213.PubMedGoogle Scholar
  272. Raff, M. C., Mirsky, R., Fields, K. I,., I,isak, R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Liebowitz, S., and Kennedy M., 1978, Galactocerebro.side: A specific cell surface antigenic marker for oligodendrocytes in culture, Nature (London) 274: 813.Google Scholar
  273. Rapport, M. M., and Norton, W. T., 1962, Chemistry of the lipids, Anon. Rev. Biochem. 31: 103.Google Scholar
  274. Rathbone, L., 1965, Effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat, Biochem. J. 97: 620.PubMedGoogle Scholar
  275. Rauch, II. C. and Einstein, E. R., 1974, Specific brain proteins: A biochemical and immunological review, in: Reviews of Neuroscience, Vol. 1 ( S. Ehrenpreis and I. J. Kopin, eds.), pp. 283–343, Raven Press, New York.Google Scholar
  276. Reddy, N. B., Askanas, V., and Engel, W. K., 1982, Demonstration of 2’,3’-cyclic nucleotide 3’phosphohydrolase in cultured human Schwann cells, J. Neurochem. 39: 887.PubMedGoogle Scholar
  277. Reiss, D. S., Lees, M. B., and Sapirstein, V. S., 1981, Is Na’,KtATPase a myelin-associated enzyme?, J. Neurochem. 36: 1418.PubMedGoogle Scholar
  278. Riekkinen, P. J., and Clausen, J., 1970, Peptidase activity of purified myelin, Acta Neurol. Scand. 46: 93.PubMedGoogle Scholar
  279. Riekkinen, P. J., and Rumsby, M. G., 1969, Esterase activity in purified myelin preparations from beef brain, Brain Res. 14: 772.PubMedGoogle Scholar
  280. Riekkinen, P. J., Clausen, J., and Arstila, A. U., 1970, Further studies on neutral proteinase activity of CNS myelin, Brain Res. 19: 213.PubMedGoogle Scholar
  281. Roomi, M. W., and Eylar, E. H., 1978, Isolation of a product from the trypsin-digested glycoprotein of sciatic nerve myelin, Biochim. Biophys. Acta 536: 122.PubMedGoogle Scholar
  282. Roomi, M. W., Ishaque, A., Khan, N. R., and Eylar, E. H., 1978, The PO protein: The major glycoprotein of peripheral nerve myelin, Biochim. Biophys. Acta 536: 112.PubMedGoogle Scholar
  283. Rosenbluth, J., 1980, Central myelin in the mouse mutant shiverer, J. Comp. Neurol. 194: 639.PubMedGoogle Scholar
  284. Rosenbluth, J., 1981, Axoglial junctions in the mouse mutant shiverer, Brain Res. 208: 283.PubMedGoogle Scholar
  285. Rossiter, R. J., 1962, The myelin sheath, metabolism of myelin and experimental demyelination, in: Neurochemistry, 2nd ed. ( K. A. C. Elliot, I. H. Page, and J. H. Quastel, eds.), pp. 870–896, Charles C Thomas, Springfield, Illinois.Google Scholar
  286. Roussel, G., Delaunoy, J.-P., Mandel, P., and Nussbaum, J. L., 1978, Ultrastructural localization study of two Wolfgram proteins in rat brain tissue, J. Neurocytol. 7: 155.PubMedGoogle Scholar
  287. Roussel, G., Delannoy, J.-P., Nussbaum, J. L., and Mandel, P., 1979, Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method, Brain Res. 160: 47.PubMedGoogle Scholar
  288. Rumsby, M. G., and Rossiter, R. J., 1968, Alkyl ethers from the glycerogalactolipid fractions of nerve tissue, J. Neurochem. 15: 1473.PubMedGoogle Scholar
  289. Rumsby, M. G., Riekkinen, P. J., and Arstila, A. U., 1970, A critical evaluation of myelin purification: Non-specific esterase activity with central nerve myelin preparations, Brain Res. 24: 495.PubMedGoogle Scholar
  290. Rumsby, M. G., Getliffe, II. M., and Riekkinen, P. J., 1973, On the association of non-specific esterase activity with central nerve myelin preparations, J. Neurochem. 21: 959.PubMedGoogle Scholar
  291. Saito, M., and Rosenberg, A., 1982, Sialosylgalactosylceramide (Gyt4) is a major ganglioside in chicken embryonic liver, J. Lipid Res. 23: 9.PubMedGoogle Scholar
  292. Sapirstein, V. S., and Lees, M. B., 1978, Purification of myelin carbonic anhydrase, J. Neurochem. 31: 505.PubMedGoogle Scholar
  293. Sapirstein, V. S., Lees, M. B., and Trachtenberg, M. C., 1978a, Soluble and membrane-bound carbonic anhydrase from rat CNS: Regional development, J. Neurochem. 31: 283.PubMedGoogle Scholar
  294. Sapirstein, V., Trachtenberg, M., Lees, M. B., and Koul, O., 1978b, Regional developmental and fractional studies on myelin and other carbonic anhydrases in rat CNS, in: Advances in Experimental Medicine and Biology, Vol. 100, Myelination and Demyelination ( J. Palo, ed.), pp. 55–68, Plenum Press, New York.Google Scholar
  295. Sapirstein, V. S., Flynn, C., and Lees, M. B., 1980, Developmental changes in carbonic anhydrase and adenylate cyclase in quaking mice, Brain Res. 185: 373.PubMedGoogle Scholar
  296. Sato, S., Quarles, R. H., and Brady, R. O., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to the neutral proteinase in highly purified myelin from human and rat brain, J. Neurochem. 39: 97.PubMedGoogle Scholar
  297. Schwartz, M., Ernst, S. A., Siegel, G. J., and Agranoff, B. W., 1981, Immunocytochemical localization of Na,K-ATPase in the goldfish optic nerve, J. Neurochem. 36: 107.PubMedGoogle Scholar
  298. Seeds, N. W., 1973, Differentiation of aggregating brain cell cultures, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 35–53, Plenum Press, New York.Google Scholar
  299. Shapira, R., Binkley, F., Kibler, R. F., and Wundram, I. J., 1970, Preparation of purified myelin of rabbit brain by sedimentation in a continuous sucrose gradient, Proc. Soc. Exp. Biol. Med. 133: 238.PubMedGoogle Scholar
  300. Shapira, R., Mobley, W. C., Thiele, S. B., Wilhelmi, M. R., Wallace A., and Kibler, R. F., 1978, Localization of 2’,3’-cyclic nucleotide-3’-phosphohydrolase of rabbit brain by sedimentation in a continuous sucrose gradient, J. Neurochem. 30: 735.PubMedGoogle Scholar
  301. Sheltawy, A., and Dawson, R. M. C., 1968, On the phosphatidic acid of myelin, J. Neurochem. 15: 144.PubMedGoogle Scholar
  302. Sheppard, J. R., Brus, D., and Wehner, J. M., 1978. Brain reaggregate cultures: Biochemical evidence for myelin membrane synthesis, J. Neurobiol. 9: 309.PubMedGoogle Scholar
  303. Sims, N. R., and Carnegie, P. R., 1978, 2’,3’-Cyclic nucleotide 3’-phosphodiestersae, in: Advances in Neurochemistry, Vol. 3 (B. W. Agranoff and M. H. Aprison, eds.), pp. 1–41, Plenum Press, New York.Google Scholar
  304. Singh, H., and Spritz, N., 1976, Protein kinases associated with peripheral nerve myelin. 1. Phosphorylation of endogenous myelin proteins and exogenous substrates, Biochim. Biophys. Acta 448: 325.PubMedGoogle Scholar
  305. Singh, H., Spritz, N., and Geyer, B., 1971, Studies of brain myelin in the “quaking mouse,” J. Lipid Res. 12: 473.PubMedGoogle Scholar
  306. Singh, H., Silberlight, I., and Singh, I. J., 1978, A comparative study of the polypeptides of mammalian peripheral nerve myelin, Brain Res. 144: 303.PubMedGoogle Scholar
  307. Smith, M. E., 1967, -17he metabolism of myelin lipids, Adv. Lipid Res. 5: 241.Google Scholar
  308. Smith, M. E., 1969, An in vitro system for the study of myelin proteins, J. Neurochem. 16: 83.PubMedGoogle Scholar
  309. Smith, M. E., 1973, A regional survey of myelin development: Some composition and metabolic aspects, J. Lipid Res. 14: 541.PubMedGoogle Scholar
  310. Smith, M. E., 1980, Proteolytic enzymes in demyelination, in: Neurochemistry and Clinical Neurology ( L. Battistin, G. Hashim, and A. Lajtha, eds.), pp. 1–10, Alan R. Liss, New York.Google Scholar
  311. Smith, M., 1983, Peripheral nervous system myelin: Properties and metabolism, in: Handbook of Neurochemistry, Vol. 3, 2nd ed. ( A. Lajtha, ed.), pp. 201–220, Plenum Press, New York.Google Scholar
  312. Smith, M. E., and Curtis, B. M., 1979, Frog sciatic nerve myelin: A chemical characterization, J. Neurochem. 33: 447.PubMedGoogle Scholar
  313. Smith, M. E., and Eng, L. F., 1965, The turnover of the lipid contents of myelin, J. Am. Oil Chem. Soc. 42: 1013.PubMedGoogle Scholar
  314. Smith, M. E., and Sedgewick, L. M., 1975, Studies of the mechanism of demyelination: Regional differences in myelin stability in vitro, J. Neurochem. 24: 763.Google Scholar
  315. Smith, M. E., Fumagalli, R., and Paoletti, R., 1967, The occurrence of desmosterol in myelin of developing rats, Life Sci. 6: 1085.PubMedGoogle Scholar
  316. Soto, E. F., Seminario, L. B., and del Carmen, M. C., 1966, Chemical composition of myelin and other subcellular fractions isolated from bovine white matter, J. Neurochem. 13: 989.PubMedGoogle Scholar
  317. Spohn, M., and Davison, A. N., 1972, Separation of myelin fragments from the central nervous system, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 33–43, Plenum Press, New York.Google Scholar
  318. Sprinkle, T. J., Wells, M. R., Garver, F. A., and Smith, D. B., 1980, Studies on the Wolfgram high molecular weight CNS myelin proteins: Relationship to 2’,3’-cyclic nucleotide 3’-phosphodiesterase, J. Neurochem. 35: 1200.PubMedGoogle Scholar
  319. Sprinkle, T. J., Baker, M. D., and McDonald, T. F., 1981, Immunocytochemical localization of CNP in adult bovine optic nerve, Trans. Am. Soc. Neurochem. 12: 209.Google Scholar
  320. Spritz, N., Singh, H., and Geyer, B., 1973, Myelin from human peripheral nerves: Quantitative and qualitative studies in two age groups, J. Clin. Invest. 52: 520.PubMedGoogle Scholar
  321. Steck, A. J., and Appel, S. H., 1974, Phosphorylation of myelin basic protein, J. Biol. Chem. 249:5416. Sternberger, N. H., 1984, Patterns of oligodendrocyte function seen by immunocytochemistry, in: Advances in Neurochemistry Vol. 5, Oligodendroglia (W. ‘T. Norton, ed.), Chapter 4, Plenum Press, New York (in press).Google Scholar
  322. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978a, Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 75: 2521.PubMedGoogle Scholar
  323. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978b, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat CNS, J. Neurocytol. 7: 251.PubMedGoogle Scholar
  324. Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. de F., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rats, Proc. Natl. Acad. Sci. U.S.A. 76: 1510.PubMedGoogle Scholar
  325. Suda, H., and Tsukada, Y., 1980, Improved method for purification of 2’,3’-cyclic nucleotide 3’phosphohydrolase from bovine cerebral white matter, J. Neurochem. 34: 941.PubMedGoogle Scholar
  326. Sudo, T., Kikuno, M., and Kurihara, T., 1972, 2’,3’-Cyclic nucleotide 3’-phosphohydrolase in human erythrocyte membranes, Biochim. Biophys. Acta 255: 640.Google Scholar
  327. Sulahke, P. V., Petrali, E. H., Thiessen, B. J., and Davis, E. R., 1980a, Calcium ion-stimulated phosphorylation of myelin proteins, Neurochem. J. 186: 469.Google Scholar
  328. Sulahke, P. V., Petrali, E. H., Davis, E. R., and Thiessen, B. J., I980b, Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of basic proteins in myelin subtractions and myelin-like membrane fractions from rat brain, Biochemistry 19: 53–63.Google Scholar
  329. Sun, G. Y., 1973, Phospholipids and acyl groups in subcellular fractions from human cortex, J. Lipid Res. 14: 656.PubMedGoogle Scholar
  330. Sun, G. Y., and Horrocks, L. A., 1970, The acyl and alk-1-enyl groups of the major phosphoglycerides from ox grain myelin and mouse brain microsomal, mitochondrial and myelin fractions, Lipids 5: 1006.PubMedGoogle Scholar
  331. Sun, G. Y., and Samorajski, T., 1973, Age differences in the acyl group composition of phosphoglycerides in myelin isolated from the brain of the rhesus monkey, Biochim. Biophys. Acta 316: 19.PubMedGoogle Scholar
  332. Sun, G. Y., and Sun, A. Y., 1972, Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey (Saimiri sciureus), Biochim. Biophys. Acta 280: 306.PubMedGoogle Scholar
  333. Sun, G. Y., and Yau, T. M., 1976, Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development, J. Neurochem. 26: 291.PubMedGoogle Scholar
  334. Suzuki, K., 1970, Formation and turnover of myelin ganglioside, J. Neurochem. 17: 209.PubMedGoogle Scholar
  335. Suzuki, K., 1971, Lipid composition of purified myelin in various white matter diseases: A hypothesis of chemical abnormality of myelin in nonspecific demyelination in: “Proceedings of Symposium on Selected Topics in Human Chemical Neuropathology,’’ Rie. Patol. Nerv. Ment. 1971:87–95.Google Scholar
  336. Suzuki, K., 1980, Myelin-associated enzymes, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), Inserm Symposium No. 14, pp. 333–347, Elsevier/North-Holland, Amsterdam.Google Scholar
  337. Suzuki, K., Poduslo, S. E., and Norton, W.F., 1967, Gangliosides in the myelin fraction of developing rats, Biochim. Biophys. Acta 144: 375.Google Scholar
  338. Suzuki, K., Poduslo, J. F., and Poduslo, S. E., 1968, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152: 576.PubMedGoogle Scholar
  339. Svennerholm, L., and Stâllberg-Stenhagen, S., 1968, Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age, J. Lipid Res. 9: 215.PubMedGoogle Scholar
  340. Svennerholm, L., Vanier, M. T., and Jungbjer, B., 1978, Changes in fatty acid composition of human brain myelin lipids during maturation, J. Neurochem. 30: 1383.PubMedGoogle Scholar
  341. Szuchet, S., and Stefansson, K., 1980, In vitro behavior of isolated oligodendrocytes, in: Advances in Cellular Neurobiology (S. Federoff and L. Hertz, eds.), pp. 313–346, Academic Press, New York.Google Scholar
  342. Thompson, E. B., and Kies, M. W., 1965, Current studies on the lipid and proteins of myelin, Ann. N. Y. Acad. Sci. 122: 129.PubMedGoogle Scholar
  343. Trapp, B. D., and Itoyama, Y., 1981, Localization of Pz protein in rabbit oligodendroglia and CNS myelin, Trans. Am. Soc. Neurochem. 12: 101.Google Scholar
  344. Trapp, B. D., McIntyre, L. J., Quarles, R. H., Sternberger, N. H., and Webster, H. do F., 1979, Immunocytochemical localization of rat peripheral nervous system myelin proteins: Pz protein is not a component of all peripheral nervous system myelin sheaths, Proc. Natl. Acad. Sci. U.S.A. 76: 35–52.Google Scholar
  345. Trapp, B. D., McIntyre, L. J., Quarles, R. H., Nonaka, G., Moser, A., Moser, H. W., and Webster, H. de F., 1980a, Biochemical characterization of myelin isolated from the central nervous system of Xenopu.s tadpoles, J. Neurochem. 34: 1211.Google Scholar
  346. Trapp, B. D., Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, If. de F., 1980b, Immunocytochemical localization of peripheral nervous system myelin proteins in Epon sections, J. Neuropathol. Exp. Neurol. 39: 392.Google Scholar
  347. Trapp, B. D., Itoyama, Y., Sternberger, N., Quarles, R. H., and Webster, H. de F., 1981, Immunocytochemical localization of PO protein in Golgi complex membranes and myelin of developing rat Schwann cells, J. Cell Biol. 90: 1.PubMedGoogle Scholar
  348. Trapp, B. D., Webster, H. de F., Johnson, D., Quarles, R. H., Cohen, S. R., and Murray, M. R., 1982, Myelin formation in rotation-mediated aggregating cell cultures: Immunocytochemical, electron microscopic, and biochemical observations, J. Neurosci. 2: 986.PubMedGoogle Scholar
  349. Tsukada, Y., and Suda, H., 1980, Solubilization and purification of 2’,3’-cyclic nucleotide 3’phosphohydrolase (CNP-A) from bovine cerebral white matter—A review, Cell. “Vol. Biol. 26: 493.Google Scholar
  350. Turner, R. S., Chou, C.-H. J., Kibler, R. F., and Kuo, J. F., 1982, Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Cat’-dependent protein kinase, J. Neurochem. 39: 1397.Google Scholar
  351. Ueno, K., Ando, S., and Yu, R. K., 1978, Gangliosides of human, cat, and rabbit spinal cords and cord myelin, J. Lipid Res. 19: 863.PubMedGoogle Scholar
  352. Uyemura, K., Horie, K., Kitamura, K., Suzuki, M., and Uchara, S., 1979, Developmental changes of myelin proteins in the chick peripheral nerve, J. Neurochem. 32: 779.PubMedGoogle Scholar
  353. Vercelli-Rena, J., Silveira, R., Dajas, F., and Rodriquez, D., 1976, Enzyme histochemistry of rat interfascicular oligodendroglia, with special reference to 5’-nucleotidase, Acta Anat. 96: 534.Google Scholar
  354. Waehneldt, T. V., 1975, Ontogenetic study of a myelin-derived fraction with 2’,3’-cyclic nucleotide 3’-phosphohydrolase activity higher than that of myelin, Biochent. J. 151: 435.Google Scholar
  355. Waehneldt, T. V., I978a, Protein heterogeneity in rat CNS myelin subfractions, Ada. Exp. Sled. Biol. 100: 117.Google Scholar
  356. Waehneldt, T. V., 1978b, Density and protein profiles of myelin from two regions of young and adult rat CNS, Brain Res. Bull. 3: 37.PubMedGoogle Scholar
  357. Waehneldt, T. V., and Lane, J. D., 1980, Dissociation of myelin from its ’’enzyme markers“ during ontogeny, J. Neurochem. 35: 566.PubMedGoogle Scholar
  358. Waehneldt, T. V., and Linington, C., 1980, Organization and assembly of the myelin membrane, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 389–412, Elsevier/North-Holland, Amsterdam.Google Scholar
  359. Waehneldt, T. V., and Malotka, J., 1980, Comparative electrophoretic study of the Wolfgram proteins in myelin from several mammalia, Brain Res. 189: 582.PubMedGoogle Scholar
  360. Waehneldt, T. V., and Mandel, P., 1972, Isolation of rat brain myelin, monitored by polyacry’amide gel electrophoresis of dodecyl sulfate-extracted proteins, Brain Res. 40: 419.PubMedGoogle Scholar
  361. Waehneldt, T. V., Matthieu, J.-M., and Neuhoff, V., 1977, Characterization of a myelin-related fraction (SNt) isolated from rat forebrain at two developmental stages, Brain Res. 138: 29.PubMedGoogle Scholar
  362. Webster, H. de F., 1971, The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves, J. Cell Biol. 48: 348.PubMedGoogle Scholar
  363. Weissbarth, S., Maker, H. S., Raes, I., Brannan, T. S., Lapin, E. P., and Lehrer, G. M., 1981, The activity of 2’,3’-cyclic nucleotide 3’-phosphodiesterase in rat tissues, J. Neurochem. 37: 677.PubMedGoogle Scholar
  364. Wells, M. R., and Sprinkle, T. J., 1981, Purification of rat 2’,3’-cyclic nucleotide-3’-phosphodiesterase, J. Neurochem. 36: 633.PubMedGoogle Scholar
  365. Whitaker, J. N., 1981, The protein antigens of peripheral nerve myelin, Ann. Neurol. 9:56(Suppl). Wiggins, R. C., and Fuller, G. N., 1981, Analysis of distribution of rat sciatic nerve protein among soluble, insoluble, and myelin subfractions, Neurochem. Res. 6: 719.Google Scholar
  366. Wiggins, R. C., and Morell, P., 1980, Phosphorylation and fucosylation of myelin proteins in nitro by sciatic nerve from developing rats, J. Neurochem. 34: 627.PubMedGoogle Scholar
  367. Wiggins, R. C., Benjamins, J. A., and Morell, P., 1975, Appearance of myelin proteins in rat sciatic nerve during development, Brain Res. 89: 99.PubMedGoogle Scholar
  368. Winter, J., 1982, Shiverer peripheral myelin contains Ps, Nature (London) 298: 471.Google Scholar
  369. Woelk, H., and Boni, P., 1973, Lipid and fatty acid composition of myelin purified from normal and MS brains, Eur. Neural. 10: 250.Google Scholar
  370. Wolfgram, F., 1965, Macromolecular constituents of myelin, Ann. N. Y. Acad. Sci. 122: 104.PubMedGoogle Scholar
  371. Wolfgram, F., 1966, A new proteolipid fraction of the nervous system. I. Isolation and amino acid analyses, J. Neurochem. 13: 461.PubMedGoogle Scholar
  372. Wolfgram, F., and Kotorii, K., 1968a, The composition of myelin proteins of the central nervous system, J. Neurochem. 15: 1281.PubMedGoogle Scholar
  373. Wolfgram, F., and Kotorii, K., 1968b, -The composition of myelin proteins of the peripheral nervous system, J. Neurochem. 15: 1291.Google Scholar
  374. Wood, J. G., and Dawson, R. M. C., 1973, A major myelin glycoprotein of sciatic nerve, J. Neurochem. 21: 717.PubMedGoogle Scholar
  375. Wood, J. G., Jean, D. H., Whitaker, J. N., McLaughlin, B. S., and Albers, R. W., 1977, Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain, J. Neurocytol. 6: 571.PubMedGoogle Scholar
  376. Wu, N. C., Martinez, J. J., and Ahmad, F., 1980, Phosphoprotein phosphatase of human central nervous system myelin: Purification to apparent homogeneity of a low Mrphosphatase and characterization of the high M, phosphatase, FEBS Lett. 116: 157.PubMedGoogle Scholar
  377. Wu, P.-S., and Ledeen, R. W., 1980, Evidence for the presence of CDP-ethanolamine:I,2-diacyl-snglycerol ethanolamine-phosphotransf erase in rat central nervous system myelin, J. Neurochem. 35: 659.PubMedGoogle Scholar
  378. Yakovlev, P., and Lecours, A. R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Development of the Brain in Early Life ( A. Minkowski, ed.), pp. 3–64, Blackwell, Oxford.Google Scholar
  379. Yandrasitz, J. R., Ernst, S. A., and Salganicoff, L., 1976, The subcellular distribution of carbonic anhydrase in homogenates of perfused rat brain, J. Neurochem. 27: 707.PubMedGoogle Scholar
  380. Yohe, H. C., Jacobson, R. I., and Yu, R. K., 1984, Ganglioside and basic protein interaction: Protection of gangliosides from neuraminidase action, J. Neurosci. Res. 9: 401.Google Scholar
  381. Yourist, J. E., Ahmad, F., and Brady, A. H., 1978, Solubilization and partial characterization of a phosphoprotein phosphatase from human myelin, Biochim. Biophys. Acta 522: 452.PubMedGoogle Scholar
  382. Yu, R. K., and Iqbal, K., 1979, Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, oligodendroglia and neurons, J. Neurochem. 32: 293.PubMedGoogle Scholar
  383. Yu, R. K., and Yen, S. 1., 1975, Gangliosides in developing mouse brain myelin, J. Neurochem. 25: 229.PubMedGoogle Scholar
  384. Yu, Y.-T, and Campagnoni, A. T., 1982, In vitro synthesis of the four mouse myelin basic proteins: Evidence for the lack of a metabolic relationship, J. Neurochem, 39: 1559.Google Scholar
  385. Zabrenetzky, V. S., Krygier-Brevart, V., and Spencer, P. S., 1977, Cyclic AMP stimulated protein phosphorylation in peripheral myelin and Schwann cell plasma membranes, Proc. Int. Soc. Neurochem. 6: 502.Google Scholar
  386. Zalc, B., Monge, M., Dupouey, P., Hauw, J. J., and Baumann, N. A., 1981, Immunohistochemical localization of galactosyl and sulfagalactosyl ceramide in the brain of the 30-day-old mouse, Brain Res. 211: 341.PubMedGoogle Scholar
  387. Zanetta, J.-P., Sarlieve, L. L., Mandel, P., Vincendon, G., and Gombos, G., 1977, Fractionation of glycoproteins associated to adult rat brain myelin fractions, J. Neurochem. 29: 827.PubMedGoogle Scholar
  388. Zgorzalewicz, B., Neuhoff, V., and Waehneldt, T. V., 1974, Rat myelin proteins: Compositional changes in various regions of the nervous system during ontogenetic development, Neurobiology 4: 265.PubMedGoogle Scholar
  389. Zimmerman, A. W., Quarles, R. H., Webster, H. de F., Matthieu, J.-M., and Brady, R. O., 1975, Characterization and protein analysis of myelin subfractions in rat brain: Developmental and regional comparisons, J. Neurochem. 25: 749.PubMedGoogle Scholar
  390. Zimmerman, T. R., Jr., and Cammer, W., 1982, ATPase activities in myelin and oligodendrocytes isolated from the brains of developing rats and from bovine brain white matter, J. Neurosci. Res. 8: 73.PubMedGoogle Scholar
  391. Zimmerman, T. R., Jr., and Cammer, W., 1983, Elevated specific activity of 5’-nucleotidase in a spinal cord myelin fraction from shiverer mice: Comparison with other myelin-associated enzymes and myelin proteins, Biochim. Biophys. Acta. 760: 377.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • W. T. Norton
    • 1
  • Wendy Cammer
    • 2
  1. 1.The Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineThe BronxUSA
  2. 2.Department of NeuroscienceAlbert Einstein College of MedicineThe BronxUSA

Personalised recommendations