Myelin pp 51-95 | Cite as

Diffraction Studies of Molecular Organization and Membrane Interactions in Myelin

  • Daniel A. Kirschner
  • Allen L. Ganser
  • Donald L. D. Caspar


The myelin sheath derives from the spiral infolding about the axon of a membrane-bound, glial cell process. The major part of the sheath consists of closely packed membrane pairs separated by narrow fluid spaces. The periodic nature of this membrane array makes myelin well suited for examination of its molecular organization by diffraction techniques. Diffraction provides a means of monitoring the separation between membranes and of analyzing the forces and interactions between them. This method, which is nonperturbing, is uniquely suited to analyzing myelin structure and stability in physiologically intact tissue, even in the living animal. X-ray and neutron diffraction results on myelin can be correlated with its chemical composition, its structure as seen by electron microscopy (EM), and its responses to nerve conduction and to physical-chemical treatments. This correlation has led to a description of the average distribution of lipid, protein, and water in the membrane array and to the localization of specific proteins and lipids within the myelin membrane bilayer. It has also led to an understanding of the role of ions in membrane-membrane interactions in myelin and the possible involvement of these ions in nerve conduction.


Sciatic Nerve Peripheral Nervous System Repeat Period Myelin Membrane Membrane Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, G. E., 1962, Neutron Diffraction, Oxford University Press, Oxford.Google Scholar
  2. Bear, R. S., Palmer, K. J., and Schmitt, F. 0., 1941, X-ray diffraction studies of nerve lipides, J. Cell. Comp. Physiol. 17: 355.Google Scholar
  3. Blaurock, A. E., 1971, Structure of the nerve myelin membrane: Proof of the low-resolution profile, J. Mol. Biol. 56: 35.PubMedCrossRefGoogle Scholar
  4. Blaurock, A. E., 1979, On phasing the small-angle X-ray diffraction pattern from nerve myelin, Biophys. J. 26: 147.Google Scholar
  5. Blaurock, A. E., 1981, The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction, Brain Res. 210: 383.PubMedCrossRefGoogle Scholar
  6. Blaurock, A. E., 1982, Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis, Biochim. Biophys. Acta 650: 167.PubMedCrossRefGoogle Scholar
  7. Blaurock, A. E., and Nelander, J. C., 1979, Locating the major glycoprotein (Po protein) in the X-ray profile of frog sciatic-nerve myelin, J. Neurochem. 32: 1753.PubMedCrossRefGoogle Scholar
  8. Blaurock, A. E., and Worthington, C. R., 1966, Treatment of low angle X-ray data from planar and concentric multilayered structures, Biophys. J. 6: 305.PubMedCrossRefGoogle Scholar
  9. Boggs, J. M., and Moscarello, M. A., 1978, Structural organization of the human myelin membrane, Biochim. Biophys. Acta 515: 1.Google Scholar
  10. Brady, G. W., Birnbaum, P. S., Moscarellc, M. A., and Papahadjopoulos, D., 1979, Liquid diffraction analysis of the model membrane system—egg lecithin + myelin protein (N-2), Biophys. J. 25: 23.CrossRefGoogle Scholar
  11. Brady, G. W., Fein, D. B., Wood, D. D., and Moscarello M. A., 1981a, The interaction of basic proteins from normal and multiple sclerosis myelin with phosphatidylglycerol vesicles, FEBS Lett. 125: 159.PubMedCrossRefGoogle Scholar
  12. Brady, G. W., Murthy, N. S., Fein, D. B., Wood, D. D., and Moscarello, M. A., 1981b, The effect of basic myelin protein on rnultilayer membrane formation. Biophys. J. 34: 345.PubMedCrossRefGoogle Scholar
  13. Bragg, W. L., and’Perutz, M. F., 1952, The structure of haemoglobin, Proc. R. Soc. London Ser. A 213: 425.Google Scholar
  14. Branton, D., 1967, Fracture faces of frozen myelin, Exp. Cell Res. 45: 703.PubMedCrossRefGoogle Scholar
  15. Braun, P. E., 1977, Molecular architecture of myelin, in: Myelin ( P. Morell, ed.), pp. 91–115, Plenum Press, New York.Google Scholar
  16. Carnegie, P. R., and Dunckley, P. R., 1975, Basic proteins of central and peripheral nervous system myelin, in: Advances in Neurochemistry, ( B. W. Agranoff and M. H. Aprison, eds.), p. 95, Plenum Press, New York.Google Scholar
  17. Caspar, D. L. D., and Kirschner, D. A., 1971, Myelin membrane structure at 10 A resolution, Nature (London) New Biol. 231: 46.CrossRefGoogle Scholar
  18. Caspar, D. I. D., Melchior, V., Hollingshead, C. J., and Kirschner, D. A., 1980, Dynamics of myelin membrane contacts, in: Arent brane-MembraneInteractions ( N. B. Gilula, ed.), p. 195, Raven Press, New York.Google Scholar
  19. Chabre. M., 1975, X-ray diffraction studies of retinal rods. I. Structure of the disc-membrane, effect of illumination, Biochem. Biphy.s. Acta 382: 322.Google Scholar
  20. Cowley, A. C., Fuller, N. L., Rand, R. P., and Parsegian, V. A., 1978, Measurement of repulsive forces between charged phospholipid bilayers, Biochemistry 17: 3163.PubMedCrossRefGoogle Scholar
  21. Curatolo, W1’., Sakura, J. D., Small, D. M., and Shipley, G. G., 1977, Protein-lipid interactions: Recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin, Biochemistry 162313.Google Scholar
  22. Daernen, F. J. M., 1973, Vertebrate rod outer segment membranes, Bioclrirn. Biophys. Acta 300: 255.CrossRefGoogle Scholar
  23. Dupoucy, P., Jacque, C., Bourre, J. M. Cesselin, F., Ptisat, A., and Baumann, N., 1979, Immunochemiral studies of myelin basic protein in shivercr mouse devoid of major dense line of myelin, Neurosci. Lett. 12: 113.Google Scholar
  24. Ernnmelot, P., 1977, The organization of the plasma membrane of mammalian cells: Structure in relation to function, in: Mammalian Cell Membranes, Vol. 2, ( G. A. Jamieson and D. NI. Robinson, eds.), p. 1, Butterwoitus, London.Google Scholar
  25. Fernandez-Moran, 11., and Finean, J. B., 1957, Electron microscope and low-angle X-ray diffraction studies of the nerve rnyyelin sheath, J. Biophys. Biochem. Cytol. 3: 725.Google Scholar
  26. Ficha, W., Peter, J. B., Mead, J. F., and Gan-Elepano, M., 1971, Lipids and fatty acids of sarcolemma, sarcoplasmic rericulurn, and mitochondria from rat skeletal muscle, J. Biol. Chem. 296: 5617.Google Scholar
  27. Finean, J. B., 1957. The role of water in the structure of peripheral nerve myelin, J. Biophys. Biochem. Cytol. 3: 95.Google Scholar
  28. Finean, J. B., and Burge, R. E., 1963, The determination of the Fourier transform of the myelin layer from a study of swelling phenomena, J. Mol. Biol. 7: 672.PubMedCrossRefGoogle Scholar
  29. Finean, J. B., and Millington, P. F., 1957, Effects of ionic strength of immersion medium on the structure of peripheral nerve myelin, J. Biophys. Biochem. Cytol. 3: 89.PubMedCrossRefGoogle Scholar
  30. Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayer. I. X-ray diffraction, J. Slot. Biol. 100: 3–15.Google Scholar
  31. Franks, N. P., and I.rvine, Y. K., 1981, I.ow-angle X-ray diffraction, in: Membrane Spectroscopy, Vol. 31 ( E. Grell, ed.), p. 437, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  32. Franks, N. P., and Lich, W. R., 1979, The structure of lipid bilayers and the effects of general anaesthetics: An X-ray and neutron diffraction study, J. Mol. Biol. 133: 469.PubMedCrossRefGoogle Scholar
  33. Franks, N. P., and I.ieh, W. R., 1980, Rapid movement of molecules across membranes: Measurement of the permeability coefficient of water using neutron diffraction, J. Slot. Biol. 141: 43.Google Scholar
  34. Franks, N. P., Melchior, V., Kirschner, D. A., and Caspar, D. L. D., 1982, Structure of myelin lipid bilayers: Changes during maturation, J. Mol. Biot 155: 133.CrossRefGoogle Scholar
  35. Ganser, A. L., and Kirschner, D. A., 1980, Myelin structure in the absence of basic protein in the shivercr mouse, in: Neurological l7tutations Affecting,t7yelinauiou (N. Baumann, ed.), INSERM Symposium No. 14, p. 171, Elsevier’ North-Holland, Amsterdam.Google Scholar
  36. Gereu, B. B., 1951, The formation from the Schwann cell surface of the myelin in the peripheral nerves of chick embryos, Exp. Cell Res. 7: 558.Google Scholar
  37. Golds, E. F., and Braun, P. E., 1976, Organization of membrane proteins in the intact myelin sheath, J. Biol. Chem. 251: 4729.PubMedGoogle Scholar
  38. Greenfield, S., Brostoff, S. W., and Hogan, E. L., 1980, Characterization of the basic proteins from rodent peripheral nervous system myelin, J. Netrochem. 34: 453.CrossRefGoogle Scholar
  39. Gregson, N.A., 1976, the chemistry-and structure of myelin in: The Peripheral Nerve (D. N. Landon, ed.), p. 512, 1lalsted Press, New York.Google Scholar
  40. Guidotti, G., 1972, Membrane proteins, Annu. Reza. Biochem. 41: 731.CrossRefGoogle Scholar
  41. Hirano, A., Zimmerman, H. M., and Levine, S., 1966, Myelin in the central nervous system as observed in experimentally induced edema in the rat, J. Cell Biol. 31: 397.PubMedCrossRefGoogle Scholar
  42. l lollingshead, C. J., Caspar, D. I. I)., Melchior, V., and Kirschner, D. A., 1981, Compaction and particle segregation in myelin membrane arrays, J. Cell Biol. 89: 631.Google Scholar
  43. Holmes, K. C., and Blow, I). M., 1966, The Use of X-ray Diffraction in the Study of Protein and Nucleic Acid Structure, Wiley, New York.Google Scholar
  44. lorrocks, L. A., 1972, Content, composition, and metabolism of mammalian and avian lipids that contain ether groups, in: Ether Lipids—Chemistry and Biology ( F. Snyder, ed.), p. 177, Academic Press, New York.CrossRefGoogle Scholar
  45. Inoue, Y., Nakamura, R. Mikoshiba, K., and Tsukacla, Y., 1981, Fine structure of the central myelin sheath in the myelin deficient mutant shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia, Brain Bes. 219: 85.Google Scholar
  46. James, R. W., 1965, The Optical Principles of the Diffraction of X-rays, Cornell University Press, Ithaca, New York.Google Scholar
  47. Kirschner, D. A., 1971, The structure of the nerve myelin membrane at 10 A resolution, Ph.D. thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  48. Kirschner, D. A., 1974, Comparative X-ray and neutron diffraction from nerve myelin membranes, in: Spectroscopy in Biology and Chemistry ( S. Yip and S.-II. Chen, eds.), p. 203, Academic Press, New York.Google Scholar
  49. Kirschner, D. A., and Caspar, D. L. D., 1975, Myelin structure transformed by (limo hylsulfoxide, [’roc. Natl. Acad. Sci. L’.S. 4. 72: 3513.Google Scholar
  50. Kirschner, D. A., arid Caspar, D. L. D., 1977, Diffraction studies of molecular organization in myelin, in: [Llyezin ( P. Morell, ed.), pp. 51–89, Plenum Press, New York.Google Scholar
  51. Kirschner, D. A., and Ganser, A. L., 1980, Compact myelin exists in the absence of basic protein in the shiverer mutant mouse, Nature (London) 238: 207.CrossRefGoogle Scholar
  52. Kirschner, D. A., and Ganser, A. L., 1982, Myelin labeled with mercuric chloride: Asymmetric localization of phospbatidylcthano1amine plasmalogen, J. Mol. Biol. 157: 635.PubMedCrossRefGoogle Scholar
  53. Kirschner, D. A., and Hollingshead, C. J., 1980, Processing for electron microscopy alters membrane structure and packing in myelin, J. L (lrasluct. Res. 73: 211.Google Scholar
  54. Kirschner, D. A., and Sapirstein, V. S., 1982, Triethyl tin induced myelin edema: An intermediate swelling state detected by X-ray diffraction, J. Neurocytol. 11: 559.PubMedCrossRefGoogle Scholar
  55. Kirschner, D. A., and Sidman, R. L., 1976, X-ray diffraction study of myelin structure in immature and mutant mice, Biochim. Biophys. Ada 448: 73.CrossRefGoogle Scholar
  56. Kirschner, D. A., Caspar, D. L. D., Schoenborn, B. P., and Nunes, A. C., 1975, Neutron diffraction studies of nerve myelin, in: Neutron Scattering for the Analysis of Biological Structures (B. P. Schoenborn, ed.), Brookhaven Symposium in Biology No. 27, pp. III 68–76.Google Scholar
  57. Kirschner, D. A., Hollingshead, C. J., Thaxton, C., Caspar, D. L. D., and Goodenough, D. A., 1979, Structural states of myelin observed by X-ray diffraction and freeze-fracture electron microscopy. J. Cell Biol. 82: 140.PubMedCrossRefGoogle Scholar
  58. Lalitha, S., and Worthington, C. R., 1975, The swelling property of central nervous system nerves using X-ray diffraction, J. Mol. Biol. 96: 625.PubMedCrossRefGoogle Scholar
  59. Lecuyer, H., and Dervichian, D. G., 1969, Structure of aqueous mixtures of lecithin and cholesterol, J. Mol. Biol. 45: 39.PubMedCrossRefGoogle Scholar
  60. Levine, Y. K., and Wilkins, M. H. F., 1971, Structure of oriented lipid bilayers, Nature (London) New Biol. 230: 69.CrossRefGoogle Scholar
  61. Li, J., 1978, An X-ray diffraction study of chloroplast thylakoid membrane structure, Ph.D. thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  62. Makowski, L., Caspar, D. L. D., Phillips, W. C., and Goodenough, D. A., 1977, Gap junction structures. II. Analysis of the X-ray diffraction data, J. Cell Biol. 74: 629.PubMedCrossRefGoogle Scholar
  63. Martenson, R. F., 1980, Myelin basic protein: What does it do?, in: Biochemistry of Brain (S. Kumar, cd.), p. 49, Pergamon Press, Oxford, New York, “Toronto, Sydney, Paris, Frankfurt.Google Scholar
  64. Mateu, L., Luzzati, V., London, Y., Gould, R. M., Vosseberg, F. G. A., and Olive, J., 1973, X-ray diffraction and electron microscope study of the interactions of myelin components: The structure of a lamellar phase with a 150 to 180 repeat distance containing basic proteins and acidic lipids, J. Mol. Biol. 75: 697.PubMedCrossRefGoogle Scholar
  65. McIntosh, T. J., 1980, Difference in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers: A molecular packing model. Biophys. J. 29: 237.PubMedCrossRefGoogle Scholar
  66. McIntosh, T. J., and Robertson, J. D., 1976, Observations on the effect of hypotonie solutions on the myelin sheath in the central nervous system, J. Mol. Biol. 100:213.Google Scholar
  67. Melchior, V., Hollingshead, C. J., and Caspar, D. L. D. 1979, Divalent cations cooperatively stabilize close membrane contacts in myelin, Bioclune. Biophys. Ada 554: 204.CrossRefGoogle Scholar
  68. Mendell, J. R, and Whitaker, J. N., 1978, localization studies of myelin basic protein, J. Cell Biol. 76: 502.PubMedCrossRefGoogle Scholar
  69. Mikoshiba, K., Nagaike, K., and Tsukada, Y., 1980, Subeel1ulardistribution and developmental change of 2’,3’-cyclic nucleotide 3’-phosphohydrolase in thecentral nervous system of the myelin-deficient shiverer mutant mice, J. Neurochem. 35: 465.PubMedCrossRefGoogle Scholar
  70. Mikoshiba, K., Kohsaka, S., Takamatsu, K., and Tsukada, Y., 1981, Neurochemical and morphological studies on the myelin of peripheral nervous system from Shiverer mutant mice: Absence of basic proteins common to central nervous system, Brain Res. 204: 155.CrossRefGoogle Scholar
  71. Mokrasch, L. C., Bear, R.S., and Schmitt, F. O., 1971, Myelin, Neurosci. Res. Program Bull. 9:440. Moody, M. F., 1963, X-ray diffraction pattern of nerve myelin: A method for determining the phases, Science 142: 1173.Google Scholar
  72. More11, P., Greenfield, S., Costantino-Ceccarini, E., and Wisniewski, H., 1972, Changes in the protein composition of mouse brain myelin during development, J. Neurochem. 19: 2545.PubMedCrossRefGoogle Scholar
  73. Nelander, J. C., and Blaurock, A. E., 1978, Disroder in nerve myelin: Phasing the higher order reflections by means of the diffuse scatter, J. Mol. Biol. 118: 497.CrossRefGoogle Scholar
  74. Norton, W. T., 1959, Reaction of mercuric chloride with plasmalogen, Nature (London) 184:1144. Norton W. T. and Cammer, W., 1984, Isolation and characterization of myelin, in: Myelin (P. More11, ed.), pp. 147–195, Plenum Press, New York.Google Scholar
  75. Norton, W. T., Brotz, M., and’ Korey, S. R., 1965, Studies in the histoc:hemistry of plasmalogens, J. Neuropathol. Exp. Neurol. 24: 352.CrossRefGoogle Scholar
  76. Omlin, F. X., Webster, H. de F., Palkovits, C. E., and Cohen, S. R., 1982, Immunocytochemical localization of basic protein in major dense line of central and peripheral myelin, J. Cell. Biol. 95: 242.PubMedCrossRefGoogle Scholar
  77. Padron, R., and Mateu, L., 1980, The effect of the repetitive propagation of action potentials on the structure of toad sciatic nerve myelin membranes: An X-ray diffraction study at 11 A resolution, J. Neurosci. Res. 5: 611.PubMedCrossRefGoogle Scholar
  78. Padron, R., and Mateu, L., 1981, In vivo structure of frog sciatic nerve myelin membranes: An X-ray diffraction study at 13 A resolution, J. Neurosci. Res. 6: 251.Google Scholar
  79. Padron, R., and Mateu, L., 1982, Repetitive propagation of action potentials destabilizes the structure of the myelin sheath: A dynamic X-ray diffraction study, Biophys. J. 39: 183.PubMedCrossRefGoogle Scholar
  80. Padron, R., Mateu, L., and Kirschner, D. A., 1979, X-ray diffraction study of the kinetics of myelin lattice swelling: Effect of divalent cations, Biophys. J. 28: 231.PubMedCrossRefGoogle Scholar
  81. Padron, R., Mateu, I,., and Requena, J., 1980, A dynamic X-ray diffraction study of anaesthesia action: Changes in myelin structure and electrical activity recorded simultaneously from frog sciatic nerves treated with n-alkanes, Biochim. Biophys. Acta 602: 221.Google Scholar
  82. Palmer, K. J., and Schmitt, F. 0., 1941, X-ray diffraction studies of lipide emulsions, J. Cell. Comp. Physiol. 17: 385.Google Scholar
  83. Papahadjopoulos, D., Vail, W. J., and Moscarello, M., 1975, Interaction of a purified hydrophobic protein from myelin with phospholipid membranes, J. Mernbr. Biol. 22: 143.CrossRefGoogle Scholar
  84. Parsons, D. F., and Akers, C. K., 1969, Neutron diffraction of cell membranes (myelin), Science 165: 1016.PubMedCrossRefGoogle Scholar
  85. Peters, A., 1960, The formation and structure of myelin sheaths in the central nervous system, J. Biophys. Biochem. Cytol. 8: 431.PubMedCrossRefGoogle Scholar
  86. Peterson, R. G., and Gruener, R. W., 1978, Morphological localization of PNS myelin proteins, Brain Res. 152: 17.PubMedCrossRefGoogle Scholar
  87. Peterson, R. G., and Pease, D. C., 1972, Myelin embedded in polymerized glutaraldehyde-urea, J. Ultrastruct. Res. 41: 115.PubMedCrossRefGoogle Scholar
  88. Pinto da Silva, P., and Miller, R. G., 1975, Membrane particles on fracture faces of frozen myelin, Proc. Natl. Acad. Sci. U.S.A. 72: 4046.CrossRefGoogle Scholar
  89. Poduslo, S. E., 1975, The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain, J. Neurochem. 24: 647.PubMedGoogle Scholar
  90. Privat, A., Jacque, C., Bourre, J. M., Dupouey, P., and Baumann, N., 1979, Absence of the major dense line in myelin of the mutant mouse “shiverer,” Neurosci. Lett. 12: 107.PubMedCrossRefGoogle Scholar
  91. Rand, R. P., 1981, Interacting phospholipid bilayers: Measured forces and induced structural changes, Annu. Rev. Biophys. Bioeng. 10: 277.PubMedCrossRefGoogle Scholar
  92. Rand, R. P., Fuller, N. L., and Lis, L. J., 1979, Myelin swelling and measurement of forces between myelin membranes, Nature (London), 279: 258.CrossRefGoogle Scholar
  93. Robertson, J. D., 1958, Structural alterations in nerve fibers produced by hypertonie solutions, J. Biophys. Biochem. Cytol. 4: 349.PubMedCrossRefGoogle Scholar
  94. Rosenbluth, J., 1980a, Peripheral myelin in the mouse mutant Shiverer, J. Comp. Neurol. 193:729. Rosenbluth, J., 1980b, Central myelin in the mouse mutant Shiverer, J. Comp. Neurol. 194: 639.PubMedCrossRefGoogle Scholar
  95. Rumsby, M. G., and Crang, A. J., 1977, The myelin sheath: A structural examination, in: The Synthesis, Assembly and Turnover of Cell Surface Components ( G. Poste and G. L. Nicolson, eds.), p. 247, North-Holland, Amsterdam.Google Scholar
  96. Sayre, D., 1952, Some implications of a theory due to Shannon, Acta Crystallogr. 5: 843.CrossRefGoogle Scholar
  97. Schmitt, F. 0., Bear, R. S., and Clark, G. L., 1935, X-ray diffraction studies on nerve, Radiology 25: 131.Google Scholar
  98. Schmitt, F. 0., Bear, R. S., and Palmer, K. J., 1941, X-ray diffraction studies on the structure of the nerve myelin sheath, J. Cell Comp. Physiol. 18: 31.Google Scholar
  99. Torbet, J., and Wilkins, M. H. F., 1976, X-ray diffraction studies of lecithin bilayers, J. Theor. Biol. 62: 447.PubMedCrossRefGoogle Scholar
  100. Turner, J. D., and Rouser, G., 1974, Removal of lipid from intact erythrocytes and ghosts by aqueous solutions and its relevance to membrane structure, Lipids 9: 49.PubMedCrossRefGoogle Scholar
  101. Wilkins, M. H. F., Blaurock, A. E., and Engelman, D. M., 1971, Bilayer structure in membranes, Nature (London) New Biol. 230: 72.CrossRefGoogle Scholar
  102. Williams, P. L., and Wendell-Smith, C. P., 1971, Some additional parametric variations between peripheral nerve fiber populations, J. Anat. 109: 505.PubMedGoogle Scholar
  103. Winter, J., 1982, Shiverer peripheral myelin contains P2, Nature (London) 298: 471.CrossRefGoogle Scholar
  104. Worcester, D. L., 1976, Neutron beam studies of biological membranes and membrane components, in: Biological Membranes, Vol. 3 ( D. Chapman and D. F. H. Wallach, eds.), p. 1, Academic Press, London.Google Scholar
  105. Worcester, D. L., and Franks, N. P., 1976, Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction, J. Mol. Biol. 100: 395.CrossRefGoogle Scholar
  106. Worthington, C. R., and Blaurock, A. E., 1969a, A low-angle X-ray diffraction study of the swelling behavior of peripheral nerve myelin. Biochim. Biophys. Acta 173: 427.PubMedCrossRefGoogle Scholar
  107. Worthington, C. R., and Blaurock, A. E., 1969b, A structure analysis of nerve myelin, Biophys. J. 9: 970.PubMedCrossRefGoogle Scholar
  108. Worthington, C. R., and McIntosh, T. J., 1974, Direct determination of the lamellar structure of peripheral nerve myelin at moderate resolution (7 A), Biophys. J. 14: 703.PubMedCrossRefGoogle Scholar
  109. Worthington, C. R., and McIntosh, T. J., 1976, An X-ray study of the condensed and separated states of sciatic nerve myelin, Biochim. Biophys. Acta 436: 707.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Daniel A. Kirschner
    • 1
    • 2
  • Allen L. Ganser
    • 1
    • 2
  • Donald L. D. Caspar
    • 3
  1. 1.Department of NeuroscienceChildren’s Hospital Medical CenterBostonUSA
  2. 2.Department of NeuropathologyHarvard Medical SchoolBostonUSA
  3. 3.Rosenstiel Basic Medical Sciences Research CenterBrandeis UniversityWalthamUSA

Personalised recommendations