Myelin pp 441-487 | Cite as

Model Systems for Study of Perturbations of Myelin Metabolism

  • Marion E. Smith
  • Joyce A. Benjamins


The health of the myelin sheath is dependent not only on the normal functioning of the cells that form and maintain it, but also on the integrity of its relationship to the axon that it ensheathes. Injury to any part of this glial-myelin-axon unit may result in metabolic injury to the whole system. Neuropathologists have differentiated on morphological grounds between myelin collapse or injury with axon-sparing and myelin dissolution as a result of axonal injury. In both cases, formation of a new myelin sheath depends on reestablishment of connections and interactions among the components of the myelin-axon-cell unit. The nature of these interactions, especially those between the axon and glial plasma membrane, is unknown, although this area is being intensively investigated.


Schwann Cell Myelin Basic Protein Myelin Sheath Diphtheria Toxin Myelin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M., and Tugan, N. A., 1961, Histochemistry of myelin. II. Proteins, lipid-protein dissociation and proteinase activity in Wallerian degeneration, J. Neurochern. 6: 334.CrossRefGoogle Scholar
  2. Adams, C. W. M., Csejtey, J., Hallpike, J. F., and Bayliss, O. B., 1972, Histochemistry of myelin. XV. Changes in the myelin proteins of the peripheral nerve undergoing VV’allerian degeneration: Elertrophoretic and microdensitorneuic observation, J. Neurochent. 19: 2043.CrossRefGoogle Scholar
  3. Aguayo, A. J., Kasarjian, J., Skamene, E., Kongshavn, P., and Bray, G. M., 1977, Myelination of mouse axons by Schwann cells transplanted from normal and abnormal human nerves, Nature (London) 268: 753.CrossRefGoogle Scholar
  4. Alen, F. P., Katzman, R., and Terry, R. D., 1963, Fine structure and electrolyte analyses of cerebral edema induced by alkyl tin intoxication, J. Neuropathol. Exp. Neurol. 22: 403.CrossRefGoogle Scholar
  5. Allsopp, G., Roters, S., and Turk, J. L., 1980, Isolation and characterization of the itflmmatory infiltrate in the central nervous system of the guinea pig with experimental allergic: encephalomyelitis, Neuropathol. Appl. Neurobiol. 6: 109.PubMedCrossRefGoogle Scholar
  6. Alit, G., and Cavanagh, J. B., 1969, Ultrastructural changes in the region of the node of Ranvier in the rat caused by diptheria toxin, Brain 92: 459.CrossRefGoogle Scholar
  7. Ansari, K. A., Hendrickson, 11., Sinha, A. A., and Rand, A., 1975, Myelin basic protein in frozen and unfrozen bovine brain: A study of autolytic changes in situ, J. Neurochent. 25: 193.Google Scholar
  8. Aoki, K., and Siegel, F. L., 1970, Hyperphenylalaninemia: Disaggregation of brain polyribosonres in young rats, Science 168: 129.PubMedCrossRefGoogle Scholar
  9. Amason, B. G. W., AWinkler, G. F., and l ladler, N. M., 1969. Cell-mediated demy’elinalion of peripheral nerve in tissue culture, Lab. Invest. 21: 1.Google Scholar
  10. Asbuny, A. K., and.Amason, B. G. AW., 1968, Experimental allergic neuritis: A radioautog-raphic study, J. Neuropathol. Exp. Neural. 27: 581.Google Scholar
  11. Babiteh, J. A., Blomstrand, C:., and Hamberger, A., 1974, Protein synthesis in experimental allergic encephalomyelitis, Brain Res. 79: 477.Google Scholar
  12. Babiteh, J. rA., Blontstrand, (., and Ilarnberger, A., 1975x, Antino acid incorporation into brain suhcellular fractions in experimental allergic encephalomyelitis, Arta Neurol. Scand. 51: 211.Google Scholar
  13. Babiteh, J. A., Blontstrand, C. and I lamberger, A., 1975h, Amino acid incorporation into neurons and glia of guinea pigs kith experimental allergic encephalomyelitis, Brain Res. 86: 159.Google Scholar
  14. Balazs, R., Brooksbank, B. W. I., Davison, A. N., Eayrs, J. T., and Wilson, I). A., 1969, -FIR: effect of neonatal th roidectomty on ntyelination in the rat brain, Brain Res. 15: 219.Google Scholar
  15. Baleutine, J. D., and Milton, C. NV., 1980, UItiastructural pathology of axons and myelin in calcium induced myelopathy, J.Yeuropathol. Exp. Neural. 39: 339.CrossRefGoogle Scholar
  16. Banik, N. I., and Davison, A. N., 1974, Lipid and basic protein interaction in myelin, 1üu(Jtent. J. 143: 39.Google Scholar
  17. Banik, N. I., Galtil, K., and Davison, A. N., 1976, The action of snake venom, phospholipase A and trvpsin on purified myelin in vitro, Bioc/tent. J. 159: 273.Google Scholar
  18. Banik, N. I., Powers, J. M., and Hogan, E. L., 1980, The effects of spinal cord trauma on myelin, J. Neuropathol. E.Vcow/. 39: 232.CrossRefGoogle Scholar
  19. Bass, N. II., Netsky, M. G., and Young, E., 1970, Effect of neonatal malnutrition on developing cerebrum. iI. Microchemical and histologic study of myelin formation in the rat, Arclt. Veurol. 23: 303.Google Scholar
  20. Belie, J., and Smith, A. D., 1976, AV’alleriau degeneration of rat sciatic nerve: Changes in cholesterol ester content amt fatty acid composition, J. N’tu’ocltent. 27: 969.Google Scholar
  21. Bell, M. E., Peterson, R. G., and Wiggins, R. C. 1982, Synthesis of myelin, particulate, and soluble protein subtractions of rat sciatic nerve during the early stages of Wallerian degeneration: A comparison of metabolic studies using double and single isotope methods turn recovery, Neurochent. Res. 7: 99.CrossRefGoogle Scholar
  22. Benjamins, J. A., Fitch, J., and Raclin, N. S., 1976, Effects of cerantide analogs on myclivating organ cultures, Brain Res. 102: 267.PubMedCrossRefGoogle Scholar
  23. Benton. J. W., Moser, H. W., Dodge, P. R., and Garr, S., 1966, Modification of the schedule of uryelinatiot in the rat by early nutritional deprivation, Pediatrics 38: 801.Google Scholar
  24. Berry, J. F., Ccvallos, W. H., and Wade, R. R., Jr. 1965, Lipid class and fatty acid composition of intact peripheral nerve and during Wallerian degeneration, J. Am. Oil Chent. Soc. 42: 192.Google Scholar
  25. Bhat, N. R., Sarliese, I. I., SubbaRao, G., aid Pieringer, R. A., 1979, Investigations on ntyelination in nitro: Regulation by thyroid hormone in cultures of dissociated brain cells from caii tyoWic trice, J. Biol. Cherry. 254: 9342.Google Scholar
  26. Bignarui, A., and Eng, L. F., 1973, Biochemical studies of myelin in A Walleriau degeneration of rat optic nerve, J.;Yetnochent. 20: 165.Google Scholar
  27. Bignami, A., ami Ralston, II JAIL 1969, The cellular reaction to A Wallerian degeneration in the central nervous system of the cat, Brain Res. 13: 111.CrossRefGoogle Scholar
  28. Blakemore, W. F., 1973, Demtyelination of the superior cerebellar peduncle in Ilre arouse induced by cuprizone, J. Neural. Sci. 20: 63.CrossRefGoogle Scholar
  29. Blakemore, W. F., 197–1, Pattern of remyelivation in the CNS, Nature (London) 249: 577.Google Scholar
  30. Blakenore, W. E., 1975, Reutyelination by Schwalm cells of axons demyehnated by int aspinal injection of 6-autinonicotinantide in the rat, J. Netorocvtol. 4: 715.Google Scholar
  31. Blakemore, W. F., 1976, Invasion of Schwalm cells into the spinal cord of the rat following local injections of lysolecithin. Neuropalltol. rl ppl., A’etuobiol 2: 21.Google Scholar
  32. Blake], W. D., Reignite, M. R., Thomas, I). J., Alushak, P., mud Morel I, P., 1981, Effect of n-iethyl tin on ntyelination in the developing rat, J. Ncoroehent. 36: 1–1.Google Scholar
  33. Boehme, D. H., Fordice, M. AV’., and Marks, N., 1971, Proteolytic activity in brain and spinal cord in sensitive and resistant swains of rat and moose subjected to experimental allergic encephalomyelitis, Brain Res. 75: 153.Google Scholar
  34. Boehrrte, D. H., ILnezasva, H., Hashim, G., and A-larks, N., 1978, Treatment of experimental allergic encephalomyelitis with an inhibitor of tathepsiu I) (pepstatin), Neurocheut. Res. 3: 185.CrossRefGoogle Scholar
  35. Bornstein, M. B., 1973, Fhe inununopathology of dcntyeIiva1ivr disorders examined in otgnrotypic cultures of mammalian central nerve tissues. in: Progress in Neuropalhology, Vol. I1 ( ll. M. Zimmerman. ed.), pp. 69–90, Grime and Stratton, New York.Google Scholar
  36. Bornstein, NI. B., and Appel, S. H., 1961, The application of tissue culture to the study of experimental “allergic” encephalomyelitis. I. Patterns of demyeliliation, J. YeuropaIhol. Exp. Veurol. 20: 111.Google Scholar
  37. Bornstein, M. B., and Iluntmelgard, A., 1973, Multiple sclerosis: Serum induced deutyelination in tissue culture, in: The Aetiology and Pathogenesis of the Dernvelinating Diseases, ( H. Shiraki, T. Yonezawa, and Y. Kuroiwa, eds.), pp. 341–350, Japan Science Press, Tokyo.Google Scholar
  38. Bornstein, M. B., and Iwanami, H., 1971, Experimental allergic encephalomyelitis: Demyclinating activity of serum and sensitized lymph inode cells on cultured mucous tissues, J. Neuropathol. Exp. Ne u ro 30: 240.Google Scholar
  39. Bornstein, M. B., and Raine, C. S., 1970, Experimental alletgicencephalomyelitis: Antiserum inhibition of myelination in nitro, Lab. Incest. 23: 536.Google Scholar
  40. Brosnan, C. F., Cancaner, W., Norton, W. T., and Bloom, B. R., 1980, Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis,.Nature (London) 285: 235.Google Scholar
  41. Bubis, J. J., and Wolntan, M., 1965, Hydrolytic enzymes in AW,I1rvian degeneration, Isr. J. Med. Sri. 1: 410.Google Scholar
  42. Buletza, G. A., Jr., and Smith, NI. E., 1976, Enzymatic hydrolysis of myelin basic protein and other proteins in central nervous system and lymphoid tissues from normal and demyelinating rats, Biochem. J. 156: 627.PubMedGoogle Scholar
  43. Burge, R. P., 1971, in: tlly’elin (I. C. Mokrasch, R. S. Bear, and F. O. Schmitt, tels.),.Veurosci. Res. Prog. Bull. 9:496.Google Scholar
  44. Cannier, W., 1980, Toxic dertyelinatiou: Biochemical studies and hypothetical mechanisms, in: Experimental and Clinical Netu - oto.xicology (P. S. Spencer and II. II. Schaumburg, eds.), pp. 239–256, Williams and Wilkins, Baltimore.Google Scholar
  45. Cancaner, W., and Moore, C. L., 1972, The effect of hexachlorophene on the respiration of brain and liver mitochondria, Bloc hem. I1iophl’, s. Res. Commun. 46: 1887.Google Scholar
  46. Cammei, W., Rose, A. L., and Norton, AV. T., 1975, Biochemical and pathological studies of myelin in hexachlorophene intoxication, Brain Res. 98: 517.CrossRefGoogle Scholar
  47. Camnter, W., Bider, I. Z., and Norton, W. ‘T., 1978a, Proteolytic and peroxidatic reactions of commercial horseradish peroxidase with myelin basic protein, Biochem. J. 69: 367.Google Scholar
  48. Camtmer. W., Bloom. B. R., Norton, W. T., and Gordon, S., 1978b, Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: A possible mechanise(of inflammatory demyclination, Proc. Natl. Acad. Scia U.S.A. 75: 1551.Google Scholar
  49. Cammer, W., Brosnan, C. F., Bloom, B. R., and Norton, W. I., 1981, Degradation of Po, Pi, and Pr proteins in peripheral nervous system(myelin by plasntin: Implication regarding the role of macrophages in dernyclinating diseases, J. Aeorochem. 36: 1306.Google Scholar
  50. Carlton, W. W., 1969, Spongiformt encephalopathy induced in rats and guinea pigs by cuprizone, Exp. 1101. Pathol. 10: 271.Google Scholar
  51. Carlton, AW. W., and Kreutzberg, G. 1966, Isonicotinic acid hydrazide-induced spongy degeneration of the white (natter in brains of Pekin ducks, Ant. J. Pathol. 48: 91.Google Scholar
  52. Chase, Ii. P., Dorsey, J., and YlcKhann, G. M., 1967, The effect of malnutrition on the synthesis of a myelm lipid, Pediatrics 40: 551.PubMedGoogle Scholar
  53. Citelntitka-Szorc, F., and Arnason, B. G. W., 1975, Supression of experimental allergic encephalomyelitis in guinea pigs with poly-t.-lysine, Clin. Exp. Immunol. 22: 539.Google Scholar
  54. Chuff, E., and Garcia, J. II., 1979, Pathogenesis of 6-antinonicotinantide neurourxicit: New structural analysis, in: Progress in Veuropatholog. Vol. ( H. M. Zimmerman, ed.), pp. 341–359, Raven Press, New York.Google Scholar
  55. Clarke, J. T. R. and Lowden, J. A., 1969, Hyperphenylolaninemia: Effect on the developing rat. Crt. J. Biochem. 47: 291.CrossRefGoogle Scholar
  56. Clements, R. S., 1979, Diabetic neuropathy: New concepts of its etiology, Diabetes 28: 601.Google Scholar
  57. Clemons, C. S., and Fan, K., 1979, 2’3’ Cyclic nucleotide 3’-phosphohydrolase activity in brain of acute experimental allergic encephalomyelitis, Brain He.s. 169: 620.Google Scholar
  58. Crocks, J. A., Balais, R., Johnson,:V. L., and Fasts, J. I., 1970, Effect of thyroid hormone on the biochemical maturation of rat brain: Conversion of glucose-carbon into amino acids, J. Neurochem. 17: 1275.Google Scholar
  59. Cohn, Z. A., 1978, The activation of mononuclear phagocytes: Fact, fancy and future, J. Immtotol. 121: 813.Google Scholar
  60. Coleman, J. O. D., and Palmer, J. M., 1971, The influence of pH on the inhibition of oxidative phosphorylation and electron transport by niethyltin, Biocltim. Biophy.s. Acta 245: 313.CrossRefGoogle Scholar
  61. Croles, F., Mcllwain, D. L., and Rapprt, AI. AI., 197–1, The activity of purr phospholipase A. from Crotaus atros venom on myelin and on pure phospholipids, Biocltim. Biophys. Acta 337: 68.Google Scholar
  62. Colip, M. P., Baughman, S., and Peterson, R. G., 1981, Alterations of fucoseileucine incorporation into PNS myelin by isoniazid neuropathy, J. Neurobiol. 12: 193.PubMedCrossRefGoogle Scholar
  63. Cook, R. D., and Wisniewski, H. M., 1973, The role of oligodcndroglia and astroglia in Wallettau degeneration of the optic nerve, Brain Res. 61: 191.PubMedCrossRefGoogle Scholar
  64. Cook, S. D., Murray, M. R., Whittaker, J. N., and Dowling, P. C., 1969, Synthesis of demyelinating factor by immunocytes in Guillain-Barré syndrome, Neurology 19: 313.Google Scholar
  65. Copenhaver, J. H., Vacanti, J. P., and Carver, M. J., 1973, Experimental maternal hyperphenylalaninemia: Disaggregation of fetal brain ribosomes, J. Neurochem. 21: 273.PubMedCrossRefGoogle Scholar
  66. Dahl, D., and Bignarni, A., 1975, Protein differences associated with the loss of myelivated axons and fibrillary gliosis in rat optic nerves following Wallerian degeneration, FEBS Lett. 51: 313.PubMedCrossRefGoogle Scholar
  67. Dalai, K. B., Valcana, T., Timiras, P. S., and Einstein, E. R., 1971, Regulatory role of thyroxine on myelinogenesis in the developing rat, Neurobiology 1: 211.Google Scholar
  68. DalCanto, M. C., Wisniewski, H. M., Johnson, A. G., Brostoff, S. W., and Raine, C. S., 1975, Vesicular disruption of myelin in autoimmune demyelination, J. Neurol. Sci. 24: 313.PubMedCrossRefGoogle Scholar
  69. Davison, A. N., and Dobbiug, J., 1966, Myelination as a vulnerable period in brain development, Br. Med. Bull. 22: 40.PubMedGoogle Scholar
  70. Dawson, A. P., and Selwyn, M. J., 1974, “The action of trialkyltin compounds on mitochondriai respiration: The effect of pH, Biochern. J. 138: 349.Google Scholar
  71. DeJesus, P. V., and Pleasure, D. E., 1973, Hexachlorophene neuropathy, Arch. Neurol. 29: 180.Google Scholar
  72. DiPaolo, R. V., Kanfer, J. N., and Newberne, P. M., 1974, Copper deficiency and the central nervous system: Myelination in the rat—Morphological and biochemical studies, J. europathol. Exp. Neural. 33: 226.CrossRefGoogle Scholar
  73. DiRoceo, R. J., and Hashim, G., 1981, [’“(:]Deoxyglucose mapping of EAT in the rat, Trans. Am. Soc. Neurochem. 12: 242.Google Scholar
  74. Domonkos, J., and Heiner, L., 1968, Decomposition of phospholipids during F1 allcrian degeneration, J. Neurochem. 15: 87.PubMedCrossRefGoogle Scholar
  75. Donovan, J. J., Simon, M. I., Draper, R. K., and Montal M., 1981, Diphtheria toxin forms transmembrane channels in planar lipid bilaycr, Proc. Natl. Acad. Sci. U.S.A. 78: 172.PubMedCrossRefGoogle Scholar
  76. Druse, M. J., and Krett, N. I., 1979, CNS myelin-associated glycoproteins in the offspring of protein deficient rats, J. Neurochem. 32: 665.PubMedCrossRefGoogle Scholar
  77. Dyck, P. J., O’Brien, P. C., and Ohnishi, A., 1977, Lead ncuropathy. 2. Random distribution of segmental demyelination among “old interuodes” of myelinated fibers, J. Neuropathol. Exp. Neurol. 36: 570.PubMedCrossRefGoogle Scholar
  78. Einstein, E. R., Csejtey, J., and Marks, N., 1968, Degradation of encephalitogen by purified brain acid protcinase, FEBS Lett. 1: 191.PubMedCrossRefGoogle Scholar
  79. Eliassen, S. G., 1966, Lipid synthesis in peripheral nerve from alloxan diabetic rats, Lipids 1: 237.CrossRefGoogle Scholar
  80. Eng, L. F., Chao, F.-C., Gerstl, B., Pratt, I)., and Tavaststjerna, M. G., 1968, The maturation of human white matter myelin: Fractionation of the myelin membrane proteins, Biochemistry 7:-1155.Google Scholar
  81. Eto, Y., Suzuki, K., and Suzuki, K., 1971, Lipid composition of rat brain myelin in ttiethyl tin-induced edema, J. Lipid Res. 12: 570.PubMedGoogle Scholar
  82. Figlewicz, D. A., Hof teig, J. 11., and Druse, M. J., 1978, Maternal deficiency of protein or protein and calories during lactation: Effect upon CNS myelin subtraction formation in rat offspring, Life Sci. 23: 2163.PubMedGoogle Scholar
  83. Fishman, M. A., Madyastha, P., and Prensky, A. L., 1971, The effect of undernutrition on the development of myelin in the rat central nervous system, Lipids 6: 458.PubMedCrossRefGoogle Scholar
  84. Fishman, M. A., Trotter, J. L., and Agrawal, H. C., 1977, Selective loss of myelin proteins during autolysis, Neurochem Res. 2: 247.CrossRefGoogle Scholar
  85. Fois, A. M. D., Sereni, F., Sereni, L., Malandrini, F., and Nevi, J., 1961, Central nervous system electrolyte pattern in allergic encephalomyelitis, Neurology 11: 681.PubMedCrossRefGoogle Scholar
  86. Folch-Pi, J., and Lees, M. B., 1951, Proteolipids, a new type of tissue lipoproteins: Their isolation from brain, J. Biol. Chen. 191: 807.Google Scholar
  87. Foster, R. E., Kocsis, J. D., Ma lenka, R. C., and Waxman, S. G., 1980, Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum: Electron microscopic observations, J. Neurol. Sci. 48: 221.PubMedCrossRefGoogle Scholar
  88. Friede, R. I., and Bischhausen, R., 1978, How do axons control myelin formation? The model of 6-am nionicot ma nude neuropathy, J. Neu rol. Sci. 35: 341.Google Scholar
  89. Fry, J. M., Lehrer, G. M., and Bornstein, M. B., 1972, Sulfatide synthesis: Inhibition by experimental allergic encephalomyelitis serum„ Science 175: 192.Google Scholar
  90. Fry, J. NI., Lehrer. G. M., and Bornstein, M. B., 1973, Experimental inhibition of myelinatiou in spinal cord tissue cultures: Enzyme assays, J. Neurobiol. 4: 153.Google Scholar
  91. Fry, J. NI., AV’eissbarth, S., Lehrer, G. NI., and Bornstein, M. B., 197–1, Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures, Science 183: 510.Google Scholar
  92. Fu, S. C., Mozzi, R., Krakowka, S., Higgins, R. J., and Horrocks, L. A., 1980, Plasrnalogenase and phospholipase At, A2, and I.t activities in white matter in canine distemper virus-associated demyelinating encephalomyelitis, Acta A’eruopalhol. 49: 13.Google Scholar
  93. Gaitonde, NI. K., Lewis, L. P., Evans, (., and Clapp, A., 1981. The effect of 6-am inonicotinamideon the levels of brain amino acids and glucose and their labeling with ’’C after injection of glucose,,A’eurochem. Res. 6: 1159.Google Scholar
  94. Galli, C., Trzeciak, H. I., and Paoletti, R., 1972, Effects of essential fatty acid deficient} on myelin and various subccllular structures in rat brains, J. Neurochein. 19: 1863.CrossRefGoogle Scholar
  95. Gent, 1V. L. G., Gregson, N. A., Cammack, D. B., and Raper, J. H. 1964, The lipid-protein unit in myelin, Nature (London) 204: 553.CrossRefGoogle Scholar
  96. Gibson, G. E., and Blass, J. P., 1976, Inhibition of acetylcholine synthesis and of carbohydrate utilization by maple syrup urine disease metabolites, J. Neurochem. 26: 1073.PubMedCrossRefGoogle Scholar
  97. Goldstein, G. 1V., 1973, Lead encephalopathy: The significance of lead inhibition of calcium uptake by brain mitochondria, Brain Res. 136: 185.Google Scholar
  98. Gould, R. G., Matsumoto, D., and Mattingly, G., 1982. The Schwann cell, in: Handbook of Neurochemistry, Vol. 1, 2nd cd. ( A. Lajtha, ed.), pp. 397–414, Plenum Press, New York.Google Scholar
  99. Govindarajan, K. R., Rauch, H. C., Clausen, J., and Einstein, E. R., 1974, Changes in cathepsins B-1 and D, neutral proteinase and 2’3’ nucleotide 3’ phospholydtolase activities in monkey brain with experimental allergic encephalomyelitis, J. Neurol. Sci. 23: 295.PubMedCrossRefGoogle Scholar
  100. Graham, D. I., and Gonatas, N. K., 1973, Triethyltin sulfate-induced splitting of peripheral myelin in rats, Lab. Invest. 29: 628.PubMedGoogle Scholar
  101. Graham, D. I., deJesus, P. V., Pleasure, D. E., and Gonatas, N. K., 1976, Triethyl tin sulfate-induced neuropathy in rats: Electrophysiologic, morphologic, and biochemical studies, Arch. Neurol. 33: 40.PubMedCrossRefGoogle Scholar
  102. Gregson, N. A., and Ilall, S. M., 1973, A quantitative analysis of the effects of the intraneural injection of lysophosphatidyl choline, J. Cell Sri. 13: 257.Google Scholar
  103. Griffiths, I. R., Kelly, P. A. T., and Grome, J. J., 1981, Glucose utilization in the central nervous system in the acute gliopathy due to 6-am inonicotinamide, Lab. Invest. 44: 547.PubMedGoogle Scholar
  104. Grundt, I. K., and Hole, K., 1971, p-Clorophenslalanine treatment in developing rats: Proteins and lipids in whole brain and myelin, Brain Res. 74: 269.Google Scholar
  105. Guarnieri, M., Syed, H., Weintraub, W., and Mt Khann, G. M., 1975, The reaction of myehn phospholipids with phospholipase C and D, Arch. Biochem. Biophys. 167: 581.PubMedCrossRefGoogle Scholar
  106. Hall, S. M., 1978, The Schwann cell: A reappraisal of its role in the peripheral nervous system, Neuropathol. Appl. Neurobiol. 4: 165.PubMedCrossRefGoogle Scholar
  107. Hall, S. M., and Gregson, N. A., 1971, The in vivo and ultrastructutal effects of injection of lysophosphatidy1 t holine into myelinated peripheral nerve fibres of the adult mouse, J. Cell. Sr i. 9: 769.Google Scholar
  108. Hallpike, J. F., and Adams, C. W. M., 1969, Proteolysis and myelin breakdown: A review of recent histochemical and biochemical studies, Histochem. J. 1: 559.PubMedCrossRefGoogle Scholar
  109. Ilappel, R. D., Smith, K. P., Banik, M. I., Powers, J. M., Hogan, E. I., and Balentine, J. D., 1981, Ca2+ accumulation in experimental spinal cord trauma, Brain Res. 211: 176.Google Scholar
  110. Ilashim, G. A., Wood, D. D., and Moscarello, M. A., 1980, Myelin lipophilin-induced demyelinating disease of the central nervous system, Neurorhem. Res. 5: 1137.CrossRefGoogle Scholar
  111. Hedley-Whyte, E. T., 1973, Myelination of rat sciatic nerve: Comparison of under-nutrition and cholesterol biosynthesis inhibition, J. Neuropathol. Exp. Neurol. 32: 284.PubMedCrossRefGoogle Scholar
  112. Herndon. R. M., Price, D. L., and Weiner, I. P., 1977, Regeneration of oligodendroglia during recovery from demyelinating disease,,Science 195: 693.Google Scholar
  113. Hildebrand, C., 1977, Presence of Marchi-positive myclinoid bodies in the spinal cord white matter of some vertebrate species, J. Morphol. 153: 1.PubMedCrossRefGoogle Scholar
  114. Hirsch, H. E., and Parks, M. E., 1975, Acid proteinases and other acid hydrolases in experimental allergic encephalomyelitis: Pinpointing the source, J. Netnochem. 24: 853.CrossRefGoogle Scholar
  115. Hirsch, H. E., Blanco, C. E., and Parks, M. E., 1981, Fibrinolytic activity of plaques and white matter in multiple sclerosis, J. Neuropathol. Exp. Neurol. 40: 271.PubMedCrossRefGoogle Scholar
  116. Hof wig, J. H., Vo, P. M., Yates, A. J., and Leon, K. S. 1982, Peripheral nerve phospholipid composition: Development in normal nerve and age-dependent changes in Wallerian degenerated nerve, J., Veurochem. 39: 401.Google Scholar
  117. Iloltzrnan, I)., Hsu, J. S., and Morten, P., 1978, In nitro effects of inorganic lead on isolated rat brain mitochondrial respiration, Neurochem. Res. 3: 195.Google Scholar
  118. Hortacks, I. A., Toews, A., Yashon, D., and Locke, G. E., 1973, Changes in myelin following trauma of the spinal cord in monkeys, Neurobiology 3: 256.Google Scholar
  119. Hughes, J. V., and Johnson, T. C., 1976, The effects of phenylalanine on amino acid metabolism and protein synthesis in brain cells in nitro, J. Neurochem. 26: 1105.PubMedCrossRefGoogle Scholar
  120. Hughes, J. V., and Johnson, T. C., 1978a, Abnormal amino acid metabolism and brain protein synthesis during neural development, Neurochem. Rex 3: 381.CrossRefGoogle Scholar
  121. Hughes, J. V., and Johnson, T. C., 1978b, Experimentally induced PKU and natural recovery from the effects of phenylalanine on brain protein synthesis. Biochina. Biophys. Acta 517: 473.CrossRefGoogle Scholar
  122. Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Eylar, E. H., 1980, The Pt) glycoprotein of peripheral nerve myelin, Can. J. Biochem. 58: 913.PubMedGoogle Scholar
  123. Itoyama, Y., Sternbergei, N. H., Webster, H. de F., Quarles, R. H., Cohen, S. R., and Richardson, E. P., 1980, Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions, Ann. Neurol. 7: 167.PubMedCrossRefGoogle Scholar
  124. Joel, C. D., Ellis, C. A., Lace, J. K., Swanson, M. R., and Stroemer, J. R., 1974, Stability of the brain fatty acid pattern in adult rats during extreme starvation, J. Neurochem. 23: 23.PubMedCrossRefGoogle Scholar
  125. Johnson, E. S., and Ludwin, S. K., 1981, The demonstration of recurrent demyelination and remyelination of axons in the central nervous system, Acta Neuropathol. (Berlin) 53: 93.Google Scholar
  126. Joseph, B. S., 1973, Somatofugal events in Wallerian degeneration: A conceptual overview, Brain Res. 59: 11.CrossRefGoogle Scholar
  127. Karnovsky, M. L., and Majno, G., 1961, Lipid biosynthesis in vitro by central tracts and peripheral nerves following tran.section, in: Chemical Pathology of the Nervous System ( J. Folch-Pi, ed.), pp. 261–266, Petgamon Press, New York.Google Scholar
  128. Kelly, W. R., Blakemore, W. F., Jagelman, S., and Webb, H. E., 1982, Demyelination induced in mice by avirulent Semliki Forest virus. II. An ultastructural study of focal demyelination in the brain, Neuropathol. Appl. Neurobiol. 8: 43.PubMedCrossRefGoogle Scholar
  129. Kies, M. 41’., and Deibler, C;. E., 1973, Proteolytic activity associated with human myelin basic protein preparations, Trans. Am. Soc. Neurochem. 4: 126.Google Scholar
  130. Kies, M. W., Driscoll, B. R. Seil, F. J., and Alvord, E. C., Jr., 1973, Myelin inhibition factor: Dissociation from induction of experimental allergic-encephalomyelitis, Science 179: 689.PubMedCrossRefGoogle Scholar
  131. Kim, S. U., 1971, Neurotoxic effects of alkyl mercury compound on myelinating cultures of mouse cerebellum, Exp. Neurol. 32: 237.PubMedCrossRefGoogle Scholar
  132. Kim, S. U., 1975, Effects of the cholesterol biosynthesis inhibitor AY9944 on organotypic cultures of mouse spinal cord: Retarded mvelinogenesis and induction of cytoplasmic inclusions, Lab. Invest. 32: 720.PubMedGoogle Scholar
  133. Kleinschmidt-DeMasters, B. K., and Norenberg, M. D., 1982, Neuropathologic observations in electrolyte-induced myelinolysis in the rat. J. Neuropathol. Exp. Neurol. 41: 67.PubMedCrossRefGoogle Scholar
  134. Kokrady, S., Shetty, G., and Bachhawat, B. K., 1972, Effect of neonatal thyroidectomy on glycolipid metabolism in the developing rat brain. Indian J. Biochem. Biophys. 9: 135.PubMedGoogle Scholar
  135. Konat, G., and Clausen, J., 1978, Protein composition of forebrain myelin isolated from triethyheadintoxicated young rats, J. Neurochem. 30: 907.PubMedCrossRefGoogle Scholar
  136. Konat, G., and Clausen, J., 1980, Suppressive effect of triethyllead on envy of proteins into the CNS myelin sheath in vitro, J. Neurochem. 35: 382.PubMedCrossRefGoogle Scholar
  137. Konat, G., and Offner, H., 1982. Effect of triethyllead on post-translational processing of myelin proteins, Exp. Neurol. 375: 89.CrossRefGoogle Scholar
  138. Krigrnan, M. R., and Hogan, E. L. 1976, Under nutrition in the developing rat: Effect upon myelination, Brain Res. 107: 239.CrossRefGoogle Scholar
  139. Krigrnan, M. R., Hulse, M. J., Traylor, ‘F. I). Wilson, M. H., Newell, L. R., and Hogan, E. I., 1971 Lead encephalopathy in the developing rat: Effect upon myelination, J. Neuropathol. Exp. Neurot. 33: 58.Google Scholar
  140. Krigman, M. R., Botddin, T. W., and Myshak, P., 1980, Lead, in: Experimental and Clinical A’eurotoxicology ( P. S. Spencer and II. H. Schaumburg, eds.), pp. 490–507, Williams and Wilkins, Baltimore.Google Scholar
  141. Lampert, P. W., 1967, Electron microscopic studies on ordinary and hyperacute experimental allergic encephalomyelitis, Acta Neuropathol. 9: 99.PubMedCrossRefGoogle Scholar
  142. Lampert, P. W., 1969, Mechanism of demyelination in experimental allergic neuritis: Electron microscopic studies, Lab. Invest. 20: 127.PubMedGoogle Scholar
  143. Lampert, P. W., and Schochet, S. S., 1968a, Electron microscopic observations on experimental spongy degeneration of the cerebellar white matter, J. Neuropathol. Exp. Neurol. 27: 210.PubMedCrossRefGoogle Scholar
  144. Lampert, P. W., and Schochet, S. S., 1968b, Demyelination and remyelination in lead neuropathy, J. Neuropathol. Exp. Neurol. 27: 527.PubMedGoogle Scholar
  145. Lampert, P. Garro F., and Pentschevc, A., 1970, Tellurium neuropathy,,1cta eta opathol. (Berlin) 15: 308.Google Scholar
  146. Lampert, P. W., O’Brien, J., and Garrett, R. 1973a, Hexachlorophene encepha1opathy, Arta Neuropathol. (Berlin) 23: 326.CrossRefGoogle Scholar
  147. Lampert. P. W1’., Sims, J. K., and kniazeff, A. J., 1973b, Mechanism of demyelination in JHM virus encephalomyelitis, Arta Neuropathol. 24: 76.CrossRefGoogle Scholar
  148. Lapin, E. P. Maker, H. S., Lehrer, G. NI., Weisslarth, S., Raine. C. S., Johnson, A. B., and Bornstein. M. B. 1979, Effects of anti-white matter serum on myelin and lipid synthesis in brain primes. Brain Res. 173: 513.Google Scholar
  149. Lassman, IL, Ammerer, II. P., and Kulnig, W., I978a, Itluastructural sequence of myelin degradation. I. Wallerian degeneration in the rat optic nerve, Acta Neuropathol. (Berlin) 44: 91.Google Scholar
  150. Lassman, H., Ammerer, H. P., Jurecka, 41’. and Kuhrig, AV., I9786, 1’lttastructural sequence of rrryelin degradation. II. AVallerian degeneration in the rat femoral nerve, Atta Neuropathol. (Berlin) 44: 103.Google Scholar
  151. Lees, M. B., and Chan, D. S., 1975, Proteolytic digestion of bovine brain white matter proteolipid, J. Neurochem. 25: 595.PubMedCrossRefGoogle Scholar
  152. Lehrer, G. M., Maker. H. S., Silides, D. J., Weiss, C., and Bornstein, M. B., 1978, Anti-whole white matter serum inhibits incorporation of glucose and galactose into the lipids of myelinating spinal cord cultures, J. Neurochem. 30: 217.Google Scholar
  153. Leoss, A. C. T., and Leaver, D. D. 1977. Effect of ttiethvltin on E_scherichia soli K12, Chem. Biol. Intel - of-1. 19: 339.Google Scholar
  154. Liu, II. M., 1973, Sihsvann cell properties: 1. Origin of Schwalm cells during peripheral nerve regeneration, J. Neuropathol. Exp., Vetirol. 32: 458.Google Scholar
  155. Lock, E. A., and Aldridge, W. N., 1975. The binding of tiiethyltin to rat brain myelin, J. Neurochem. 25: 871.PubMedCrossRefGoogle Scholar
  156. London, Y. and Vossenberg, F. G. A., 1973. Specific interaction of central nervous system myelin basic protein with lipids: Specific regions of the protein sequence protected from the proteolytic action of trypsin, Biochem. Biophys. Acta 307: 478PubMedCrossRefGoogle Scholar
  157. Ludwin, S. K., 1978, Central nervous system demyelination and remyelination in the mouse: An ultra-structural study of cuprizone toxicity. Lab. Ingest. 39: 597.Google Scholar
  158. Luchvin, S. K., 1979, An autoradiographiu study of cellular proliferation in remyelination of the central nervous system, Am. J. Pathol. 95: 683.Google Scholar
  159. Ludwin, S. K., 1980, Chronic demyelination inhibits remyelination in the central nervous system: An analysis of contributing factors, Lab. ingest. 43: 382.Google Scholar
  160. Ludwin, S. K., 1981, Pathology of demyelination and remyelination, Advances in Neurology, in: Vol. 31, Demyelinating Disease: Basic and Clinical Electrophysiology ( S. G. Waxman and J. M. Ritchie, eds.), pp. 123–168, Raven Press, New York.Google Scholar
  161. Maggio, B., Cumar, F. A., and Maccioni, H. J., 1972, Lipid content itt brain and spinal cord during experimental allergic encephalomyelitis in rats, J. Neurochem. 19:1(131.Google Scholar
  162. Maggio, B., Maccioni, H. J., and Cumar, F. A., 1973, Arylsulfatase A (E.C. activity in rat cen- tral nervous system during experimental allergic encephalomyelitis, J. Neurochem. 20: 503.PubMedCrossRefGoogle Scholar
  163. Maggio, B., Cumar, F. A., and Caputto, R., 1981, Molecular behavior of glycosphingolipids in interfaces: Possible participation in some properties of nerve membranes, Biochint. Biophys. Arta 650: 69.CrossRefGoogle Scholar
  164. Majno, G., and Karnovsky, M. L., 1958, A biochemical and morphological study of rnyelination and demyelination. II. Lipogenesis in vitro by rat nerves following transection, J. Exp. Sled. 108: 197.CrossRefGoogle Scholar
  165. Majno, G., Waksman, B. H., and Karnovsky, M. L., 1960, Experimental study of diphtheritic poly-neuritis in the rabbit and guinea pig. II. The effect of diphtheria toxin on lipide biosynthesis by guinea pig nerve. J. Neuropathol. Exp. Neural. 19: 7.Google Scholar
  166. Malone, M. J., Rosman, N. P., Szoke, M., and Davis, D., 1975, Myelivation of brain in experimental hypothyroidism: Art electron microscopic and biochemical study of purified myelin isolates, J. Neurol. Sci. 26: 1.PubMedCrossRefGoogle Scholar
  167. Marks, N., Stern, F. and Lajtha. A., 1975, Changes in proteolytic enzymes and proteins during maturation of the brain, Brain Res. 86: 307.PubMedCrossRefGoogle Scholar
  168. Marks, N., Grynbaum, A., and Lajtha, A., 1976, The breakdown of myelin-bound proteins by int nand exuacellular proteases, Neurochem. Res. 1: 93.CrossRefGoogle Scholar
  169. Marks, N., Grynbaum, A., and Levine. S., 1977, Proteolytic enzymes in ordinary, hyperacute. nunurcytic, and passive transfer forms of experimental allergic encephalomyelitis. Brain Res. 123: 147.PubMedCrossRefGoogle Scholar
  170. Matheson, I). F., 1968. Incorporation Of [14C] glvcine into protein of the adult rat peripheral nerve: Effect of inhibitors, J. Neurochem. 15: 179.CrossRefGoogle Scholar
  171. Matthieu, J. M., Zimmerman. A. W., Webster, H. de F., Clsamer, A. G., Brady, R. O., and Quarles, R. H., 1974, Hexachlorophene intoxication: Characterization of myelin and myelin related fractions in the rat during early postnatal development, Exp. Neurol. 45: 558.Google Scholar
  172. Matthieu, J. M., Koellreutter, B., and Joyet, M. I., 1977, Changes in CNS myelin proteins and glycoproteins after in situ autolysis, Brain Res. 2: 15.Google Scholar
  173. McCarnan, R. E., and Robins, E., 1959a, Quantitative biochemical studies of Wallerian degeneration in the peripheral and central nervous systems. I. Chemical constituents, J. Neurochem. 5: 18.CrossRefGoogle Scholar
  174. McCaman, R. E., and Robins, E., 1959b, Quantitative biochemical studies of Wallerian degeneration in the peripheral;:tnd central nervous system. II. “Twelve enzymes, J. Neurochem. 5: 32.CrossRefGoogle Scholar
  175. McDonald, W. 1., 1974, Rernyelinat ion in relation to clinical lesions of the central nervous system, Br. Med. Bull. 30: 186.Google Scholar
  176. McDonald, W. I., and Kocen, R. S., 1975, Diphtheritic ncuro eithy, in: Peripheral Neurapathy, Vol. II ( P. J. Dyck, P. K. Thomas, and E. H. Lambert, eds.), pp. 1281–1300, W. B. Saunders, Philadelphia.Google Scholar
  177. McDonald, W. i., and Sears, T. A., 1969, Effect of demyelination on conduction in the nervous system, Nature (London) 221: 182.CrossRefGoogle Scholar
  178. Mcllwain, D. L., and Rapport, M. NI., 1971, The effects of phospholipase C (Clostridium perfrigens) on purified myelin, Biochim. Biophy.s. Acta 239: 71.CrossRefGoogle Scholar
  179. McKenna, M. C:., and Carnpagnoni, A. T., 1979, Effect of pre-and postnatal essential fatty acid deficiency on brain in development and myelination, J. Nutrition 109: 1195.Google Scholar
  180. McMartin, D. N. Koestner, A., and, J. F., 1972, Enzyme activities associated with the demyelinating phase of canine distemper. 1. Beta-glueutonidase, acid and neural proteinases, Acta Neuropatitol. 22: 275.Google Scholar
  181. Menkes, J. H., and Solcher, H., 1967, Maple syrup disease, effects of dietary therapy on cerebral lipids, Arch. Neurol. 16: 486.PubMedCrossRefGoogle Scholar
  182. Meter, CI., I970, Cholesterol esters and hydrolytic cholesterol esterase during Wallerian degeneration. J. Neurochem. 17:1163.Google Scholar
  183. Morrison, L. R., and Zamecnik, P. C., 1950, Experimental demyelination by means of enzymes, especially the alpha toxin of Clostridium Weir hii, Arch. Neural. Psychiatry 63: 367.CrossRefGoogle Scholar
  184. Nagara, H., Suzuki, K., “Tiffany, C. W4’., and Suzuki, K., 1981, Triethyl tin does not induce inramyelinic vacuoles in the CNS of the quaking mouse, Brain Res. 225: 413.Google Scholar
  185. Nakhasi, H. I., Toews, A. D., and Hortocks, L. A., 1975, Effects of a postnatal protein deficiency on the content and composition of myelin from brains of weanling rats, Brain Res. 83: 176.CrossRefGoogle Scholar
  186. Natarajan, V., Yao, J. K., Dyck, P. J., and Schmid, H. II. O., 1982, Early stimulation of phosphatidylcholine biosynthesis during Wallerian degeneration of rat sciatic nerve, J. Neurochem. 38: 1419.PubMedCrossRefGoogle Scholar
  187. Norenberg, M. D., Leslie, K. O., and Robertson, A. S., 1982. Association between rise in serum sodium and central pontine myelinolysis, Ann. Neurol. 11: 128.Google Scholar
  188. Norton, W. T., 1980, Myelin enzymes: Indicators of noninsulating functions, in: Search for the Cause of Multiple Sclerosis and Other Chronic Disease of the Central Nervous System ( A. Boese, ed.), pp. 64–75, Verlag Chemie, Weinheim.Google Scholar
  189. Norton, W. T., 1981, Formation, structure, and biochemistry of myelin, in: Basic Neurochemistry ( C. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 63–92, Little, Brown, Boston.Google Scholar
  190. Norton, W. T., 1983, Recent advances in the neurobiology of oligodendroglia, in: Advances in Cellular Neurobiology, Vol. 4 (S. Federoff and L. Hertz, eds.), Academic Press, New York.Google Scholar
  191. Norton, W. T., and Poduslo, S. E., 1973, Myelination in rat brain: Changes in myelin composition during brain maturation. J. Neurochem. 21: 759.CrossRefGoogle Scholar
  192. Pappenheimer, A. M., Jr., 1977, Diphtheria toxin, Arntu. Rev. Marlton. 46: 69.Google Scholar
  193. Patsalos, P. N., Bell, M. E., and Wiggins, R. C., 1980, Pattern of myelin breakdown during sciatic nerve Wallerian degeneration: Reversal of the order of assembly, J. Cell Biol. 87: 1.PubMedCrossRefGoogle Scholar
  194. Pechan, L., and Simekova, J., 1972, 2’3’ Cyclic nucleotide-3’-phosphohydrolase activity of the central nervous tissue in exerimental allergic encephalomyelitis, J. Neurochem. 19: 557.Google Scholar
  195. Peterson, E. R., and Murray, M. R., 1965, Patterns of peripheral demyelination in vitro, Ann. N. Y. Acad. Sci. 122: 39.PubMedCrossRefGoogle Scholar
  196. Peterson, R. G., Baughman, S., and Scheidler, D. M., 1981, Incorporation of fucose and leucine in PNS myelin proteins ni nerves undergoing early Wallerian degeneration, Neurochem. Res. 6: 213.PubMedCrossRefGoogle Scholar
  197. Pleasure, D. E., Feldmann, B. and Prockop, D. J., 1973, Diphtheria toxin inhibits the synthesis of myelin proteolipid and basic proteins by peripheral nerve in vitro, J. Neurochem. 20: 81.PubMedCrossRefGoogle Scholar
  198. Pleasure, D., Bora, F. W., Lane, J., and Prockop, D., 1974, Regeneration after nerve transection: Effect of inhibition of collagen synthesis, Exp. Neural. 45: 72.CrossRefGoogle Scholar
  199. Pleasure, D. E., ITardy, M., Kreider, B., Stern, J., Doan, I I. Shuman, S., and Brown, S., 1982, Schwann cell surface proteins and glycoproteins, J. Neurochem. 39: 486.Google Scholar
  200. Porcellati, G., 1972, Amino acid and protein metabolism in Wallerian degeneration, in: Handbook of Neurochemistry, Vol. 7 (A. Lajtha, cd.), pp. 191–219, Plenum Press, New York.Google Scholar
  201. Prensky, A. I., and Moser, H. W., 1966, Brain lipids, proteolipids, and free amino acids in maple syrup urine disease, J. Neurorhem. 13: 863.CrossRefGoogle Scholar
  202. Prensky, A. I., Carr, S., and Moser, H. W., 1968, Development of myelin in inherited disorders of amino acid metabolism, Arch. Neurol. 19: 552.PubMedCrossRefGoogle Scholar
  203. Pritchard, E. T., and Rossiter, R. J., 1959, Chemical studies of peripheral nerve during Wallerian degeneration. XI. In vitro incorporation of C-labelled precursors into phosphatides, J. Neurochem. 3: 341.Google Scholar
  204. Prohaska, J. R., and Wells, W. W., 1974, Copper deficiency in the developing rat brain: A possible model for Menkes steely hair disease, J. Neurochem. 23: 91.PubMedCrossRefGoogle Scholar
  205. Prohaska, J. R., and Wells, W. W., 1975, Copper deficiency in the developing rat brain: Evidence for abnormal mitochondria, J. Neurorhem. 25: 221.CrossRefGoogle Scholar
  206. Raimondi, L., Soldaini, G. B., Buffoni, F., Ignesti, G., Massacesi, I,., Amaducci, L., and Friedman, C. A., 1982, Rhein and derivatives: In vitro studies on their capacity to inhibit certain proteases, Pharmacol. Res. Common. 14: 103.Google Scholar
  207. Raine, C. S., Traugott, U., and Stone, S. H., 1978, Glial bridges and Schwann cell migration during chronic demyelination in the C.N.S., J. Neurocytol. 7: 541.PubMedCrossRefGoogle Scholar
  208. Raine, C. S., Traugott, U., Farooq, M., Bornstein, M. B., and Norton, W. T., 1981, Augmentation of immune-mediated demyelination by lipid haptens, Lab. Invest. 45: 174.PubMedGoogle Scholar
  209. Rauch, H. C., Einstein, E. R., and Csejtey, J., 1973, Enzymatic degradation of myelin basic protein in central nervous system lesions of monkeys with experimental allergic encephalomyelitis, Neurobiology 3: 195.PubMedGoogle Scholar
  210. Rawlins, F. A., and Smith, M. E., 1971, Metabolism of sciatic nerve myelin in Wallerian degeneration, Neurobiology 1: 225.Google Scholar
  211. Rawlins, F. A., and Uzman, B. G., 1970, Retardation of peripheral nerve myelination in mice treated with inhibitors of cholesterol biosynthesis: A quantitative electron microscopic study, J. Cell Biol. 46: 505.PubMedCrossRefGoogle Scholar
  212. Rawlins, F. A., Villegas, G. M., Hedley-Whyte, E. T., and Uzman, B. G., 1972, Fine structural localization of cholesterol-1,2–3H in degenerating and regenerating mouse sciatic nerve, J. Cell Biol. 52: 615.PubMedCrossRefGoogle Scholar
  213. Reigner, J., Matthieu, J.-M., Kraus-Ruppert, R., Lassmann, H., and Poduslo, J., F., 1981, Myelin proteins, glycoproteins, and myelin-related enzymes in experimental demyelination of the rabbit optic nerve: Sequence of events, J. Neurochem. 36: 1986.Google Scholar
  214. Riekkinen, P. J., and Clausen, J., 1969, Proteinase activity in myelin, Brain Res. 15: 413.PubMedCrossRefGoogle Scholar
  215. Robain, O., and Ponsot, G., 1978, Effects of undernutrition on glial maturation, Brain Res. 149: 379.PubMedCrossRefGoogle Scholar
  216. Roizin, L., and Dmochowski, L., 1956, Comparative histologic and electron microscopic investigations of the central nervous system, J. Neuropathol. Exp. Neurol. 15: 12.PubMedCrossRefGoogle Scholar
  217. Rossiter, R. J., 1961, The chemistry of Wallerian degeneration, in: Chemical Pathology of the Nervous System ( J. Folch-Pi, ed.), pp. 207–227, Pergamon Press, New York.Google Scholar
  218. Saida, K., Saida, T., Brown, M. J., Silberberg, D. H., and Asbury, A. K., 1978, Antiserum-mediated demyelination in vitro: A sequential study using intraneural injection of experimental allergic neuritis serum, Lab. Invest. 39: 449.PubMedGoogle Scholar
  219. Saida, K., Saida, T., Brown, M. J., and Silberberg, D. H., 1979, In vivo demyelination induced by intra-neural injection of antigalactocerebroside serum, Am. J. Pathol. 95: 99.PubMedGoogle Scholar
  220. Saida, T., Saida, K., Brown, M. J., and Silberberg, D. H., 1979a, Peripheral nerve demyelination induced by intraneural injection of experimental allergic encephalomyelitis serum, J. Neuropathol. Exp. Neurol. 38: 498.PubMedCrossRefGoogle Scholar
  221. Saida, T., Saida, K., Dorfman, S. H., Silberberg, D. H., Sumner, A. J., Manning, M. C., Lisak, R. P., and Brown, M. J., 1979b, Experimental allergic neuritis induced by sensitization with galactocerebroside, Science 204: 1103.PubMedCrossRefGoogle Scholar
  222. Salzer, J. L., and Bunge, R. P., 1980, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury, J. Cell Biol. 84: 739.PubMedCrossRefGoogle Scholar
  223. Sato, S., Quarles, R. H., and Brady, R. O., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurorhem. 39: 97.CrossRefGoogle Scholar
  224. Schaumburg, H. H., Wisniewski, H. M., and Spencer, P. S., 1974, Ultrastructural studies of the dyingback process. I. Peripheral tuile telnfmu1:nul axon deg(1tecnion in yy,umic actdam1de intoxication, J. Neuropalhol. Exp. Neurol. 33: 260.CrossRefGoogle Scholar
  225. StheittIerg, I. C., Taylor, J. M., Heriog, I., and Mandell. S., I966, Opsi(and peripheral merle response to intoxication in the rabbit: Biochemical and uluasti tic tural studies, J. NeurOpnthol. Exp. Neural. 25: 202.Google Scholar
  226. Schlacpfer, W., 1979, Nature of mammalian neurofilanunts and their breakdown by calcium, in: Progress in Neuropathology, Vol. 4 ( H. Zimmerman, ed.), pp. 101–123, Raven Press, New York.Google Scholar
  227. Schubert, T., anct Frigide, R. L. 1981, The role of endoneurial fibroblasts in myelin degradation, J. Neuropathol. Fzp.Neiool. 40: 134.CrossRefGoogle Scholar
  228. Sea, C. P. and Peterson, R. G., 1975, Ulasasture and biochemistry of myelin:(It isoniaziil-induced nerfcdegeneration in rats. Fxp. Neural. 48: 252.CrossRefGoogle Scholar
  229. Seil, F. J., 1977. “Fissile cuhtnt studies of deutyelinating disease::A critical rcyietV, Ann. Neural. 2: 345.Google Scholar
  230. Scil, F. J., 1979. Clerehellum ut tissue colonc, Kec. eurocci. 4: 105.Google Scholar
  231. Seil, F. J., 1982. llcmyclination, in: Ad(ances in Cellular.A’euroluoht,i y, Vol. 3, (S. Fedor If and I. Ilertz, eds.), pp. 235–27–1,.Academic Press, New York.Google Scholar
  232. Soil, F. J., Falk, G. A., Kies. AI. W., and Allard, E. C. Jr., I968, The in va(1(O d(nt)clitating,()ä)11v Oi sera hone guinea pigs sensitized kith whole CNS:and pmdied cencphalitogn. Exp. Neurol. 22: 545.Google Scholar
  233. Shah, S. N. and Johnson. R. C., 1978, Effect of postceaning hyperphenyl:daninetnia (.n ht;tin (le)el(putent in rats: Nlyelinatiot, lipid, and fatty acid composition of myelin. Exp.A’eurul. 61: 371.Google Scholar
  234. Shah, S. N., Peterson, N. A., and.McKean, C. M., 1969, Inhibition of sterol synthesis in: Vic(by metabolites of phem 1alaHiWe, B10c1äc. Biophys. Arta 187:236.Google Scholar
  235. Sibley. AV. A., biernat, J., and Laguna. J. F. 1978. The modification of cxpr!intental allergic encephalomyelitis tv ith epsilon arttitocaproic acid. Ncurology 28: 102.Google Scholar
  236. Silberberg. I). II., 1969. Maple syrup urine disease metabolites studied in cetebcllum cultures, J. Nei/roc/rem. 16: 1111.Google Scholar
  237. Silhet,geld, E. Ii., and.Ailler, 11. S., 1978. Subcellidar ntechanisnts of lead neurotoxicity, Brain Res. 148: 151.Google Scholar
  238. Simon, R. (:., AMade, R. R., J. E. and Bakers M.-L., 1069, AV:tllerian degeneration::A sequential process, J. A’eroïochenr. 16: 1135.Google Scholar
  239. Smith, NI. II. 1066. Glucose metabolism of central, ti„HC in l’,10(with exp(ritnenial allrrgir encephalomyelitis.,A’attire (London) 209: 113Google Scholar
  240. Smith, M. F., 1969, NIyelit metabolism in vitro in experimental allergic encephalomyelitis, J. NeurocIte nn. 16: 1099.Google Scholar
  241. Smith, M. F., 1973, Studies 011 the ntchanism of dntylinatin: 7 riethyl tin-induced dentylination. J. Neuro hem. 21: 357.Google Scholar
  242. Smith, M. 11., 1977a, Studies on the mechanism Of demyelination: NIyelin autolysis in normal and edematous CNS tissue, J. Neicrochem. 28: 311.Google Scholar
  243. Smith, M. F. 19771b. The role of pioteolytt enzymes in de11nrlination in cxpcrintattal allergic cncepvtalortty clitis,:A’et/rochew. Res. 2:233.Google Scholar
  244. Smith. M. 1:., 1979, Neutral protease activity in lymphocytes of Lewis rats acute eyperint ctmec1 allergic encephalomyelitis, Neu roc Res. 1: 689.Google Scholar
  245. Smith, M. E., 1980a.1111w isofpio[i’olytit(’nzy meson PNSmy(lin, 10)1)s,.lrn.Su(. A(.,nn.n’r, 11::255Google Scholar
  246. Smith, NI. F., 19809. Proteolytic enzymes in dentyelination, in: Praires in Clinical (artel If arui Researc it, Vol 39 Velcro(henniyirraudCli rüeHf,A’eurology(I.Balti,tin,C.Ilashim,and.A.iajtha. eds.). pp. 1–10, Alan Riss. New York.Google Scholar
  247. Smith, M. D. 1980a, Piot(inase inhibitors and the suppression of I’ Ali,. in: The,Suppression o(Experimental Allergic En(ephaloinyeliti.s and illultiple Si lertms (A. N. 1)avison aud NI. L. r, eds.), pp. 211–226,:Academic l’tes, London.Google Scholar
  248. Smith. M. F., and AmaducLi, L. A., 1982. Observations on the effects of protease inhibitors on the Suppression of experimental allergic encephalonty(litis, NetoncSent. Res. 7: 511.Google Scholar
  249. Smith, M. F., stud Rauch, H. C., 1974, Metabolic activity of (INS proteins in rats and ttonk) with experimental allergic encephalomyelitis (l{AE), J. Netoo)ftenn. 23: 775.Google Scholar
  250. Smith, M. E. and Sedg(tei)k, I. M., 1975, Studies of the mechanism of dcntyclimation: Regional differences in myelin stability in vitro, J. A’eurochem. 24: 763.Google Scholar
  251. Smith, M. E., and Sternherger, N. II., 1982, Glycoprotcit biosynthesis in peripheral nervous syste111 myelin: Effect of tunicamycin, J. Neurochenn. 38: 1011.Google Scholar
  252. Smith, M. E., Sedgewick, I. M., and Tagg. J. S., 1971, Proteolytic enzymes and cxpelautuntal demyelination in the rat and titankey. J. Neurochem. 23: 965.CrossRefGoogle Scholar
  253. Smith, M. l’., Chow, S. II., and Rolph, R. II., 1981, Partial purification and characterization of neutral proteases in lymph nodes of rats with experimental allergic encephalomyelitis, Aeuroche m. Res. 6: 901.Google Scholar
  254. Smith, NI. E. Kocsis, J. D., and \i’axman, S. G., 1983, Myelin protein metabolism in demyelination and reutyelination in the sciatic nerve, Brain Res. 270: 37.PubMedCrossRefGoogle Scholar
  255. Sobue. G., and Koinnni, K., 1980,: Iterations of lipid and protein composition in myelin of acute expo internal allergic neuritis, J. Neural.Sci. 44: 229.Google Scholar
  256. Spencer, P. S. and Schaun bung. II. II., 1976, Central-peripheral disttal axonopauhy-The pathology of dying-back polyneurupathies, in: Progress in Neuropathology Col. II (H. NI. Zimmerman, e(1.). pp. 253–295. Grane and Stratton. New York.Google Scholar
  257. Spencer. P. S. AWeinberg. H. J. Raint, C. S., and Prineas. J. AV., 1975, The peripheral window-.A new model of focal demyelination and remyelination. Brain Res. 96: 323.CrossRefGoogle Scholar
  258. Spencer. P. S., Stet man, A. B., Iloroupian. D. S., and Fculds, M. N., 1979. Neurotoxie Fragrance produces ceroid and myelin disease,.Science 204: 633.Google Scholar
  259. Sprinkle, T. J., and Rennert, O. M., 1976, The effects of phenylketonuric and other metabolites on sulfated galactocerebroside synthesis in vitro and in culture. J. Neu eDehem. 26: 499.Google Scholar
  260. Sprit,. N., Singh, H., and Marinan, B., 1975a, Decrease in myelin content of rabbit sciatic nerve with aging and diabetes, Diabetes 24: 680.CrossRefGoogle Scholar
  261. Sprint, N., Singh, H., and Marinasi, B. 1975b, Metabolism of peripheral nerve myelin in experimental diabetes, J. Clin. Invest. 55: 1019.Google Scholar
  262. Steraberger, N. H., Quarles, R. H., Itoyaorota Y., and Webster, II. de F., 1979, Myelin-associated glycoprotein demonstrated immunocytochemícally in myelin and myelin-forming cells of developing rat, Prot. Yütl. lcal.5,. U.S.A. 76: 1510.Google Scholar
  263. Stohlnan, S. A., and Weiner, L. P., 1981, Chronic central nervous system demyelination in nice after JHM yin’s infection, Neorolu,g) 37: 38.Google Scholar
  264. Suckling, A. J., Jageln.ut. S., and Webb, II. E:., 1978, A comparison of brain lysosomal enzyme activities in four experimental togayirus encephaIidites, J. Neural. Sci. 35: 355.Google Scholar
  265. Sun, G. Y., 1972, Effects of a fatty acid deficiency on lipids of whole brain, uicrosomes, and myelin in the rat. J. lipid Res. 13: 56.PubMedGoogle Scholar
  266. Suzuki, K., 1969. Giant hepatic mitochondria: Production in mice fed with cuprizosie, Science 163: 81.PubMedCrossRefGoogle Scholar
  267. Suzuki, K. 1971, Soma new observations in triethyl-tin intoxication of rats, Exp. A’eurol. 31: 207CrossRefGoogle Scholar
  268. Takahashi, Y. Nomura. M., and Finusatya. S. 1961, In nitro incorporation of [’ICJ-amino acids into proteins of peripheral nerve during W’allerian degeneration. J.,A’eurochem. 7: 97.Google Scholar
  269. Ttnaka. R. Daulínuea. k…nfrf I’cki. K., 1977, I“laasluciuraI and biochemical studies on ouabaininduced oedematous brain, Arta. ’eoropathol. (Berlin) 37: 95.Google Scholar
  270. Taub, F. and Johnson. 1. C. 1975, The mechanism of polvsotne disaggregation in brain tissue by phenvlalanine, Bior hem. J. 151: 173.Google Scholar
  271. Tennekoon, G.,;Aitchison. C. S., Fiangia, J. Price, I). I., and Goldberg. A. M., 1979, Chronic Lad intoxication: Effects on developing Optic nerve,.lout.,Yenrol. 5: 558.Google Scholar
  272. Thompson, R. H. S. 1964. 1.ipolytic enzymes and demyelination, in: Metabolic card Physiologic ant o of Lipids (R. M. C. Dawson and D. N. Rhodes, eds.). pp. 541–551. AWiley, London.Google Scholar
  273. Toews, A. I)., Krigurui, M. R., Thomas. D. J., and Morell. P., 1980, Effect of inorganic lead exposure on nlyelinatiun in the rat,.Yeurochem Res. 5: 605.Google Scholar
  274. Toews. A. D. Blaker, W. D. Thomas, D. J., Gaynor, J. J., Krignan, M. R., Mushak. P., and Morell. P. 1983, Myelin deficits produced by early post-natal exposure to inorganic-lead or ttiethyltin are persistent, J.,Yeurochem. 41: 816–822.Google Scholar
  275. Torack, R., Gordon, J., and Prokop, J., 1970, Pathobiology of ac-ate triethyltin intoxication, Int. Rev. Vetcrobiol. 12: 15.Google Scholar
  276. Toyyfighi, J. and Gonatas. N. K., 1976, Hexachlorophene and the nervous system, in: Progress in Neuropathology. Vol. IIi ( If. M. Zimmerman, ed.), pp. 297–317. Crane and Stratton, New York.Google Scholar
  277. Trapp, B. I)., and Bernsohn, J., 1978, Essential fatty acid deficiencies and CNS myelin, J. Neurol.Sri. 37: 2–19.Google Scholar
  278. Trotter. J., and Smith. M. F., 1982, Degradation of myelin lipids by macrophage, Trans.f oi.Sm.A’e to - uc hem. 13: 161.Google Scholar
  279. V’ahvelaineu, M.-L., and Oja, S. S., 1975, Kinetic analysis of phcnylalanine-induced inhibition in the saturable influx of tyrosine, tryptophan, leucine, and histidine into brain cortex sliets from adult and 7-day-old rats. J. Neurm hem. 24: 885.Google Scholar
  280. Vason. N. S. Abraham. J. and Bachhawat. B. K., 1971,.Sulphate metabolism in acute EAE rats using isolated brain perfusion technique. J. A’ennu lem. 18: 59.Google Scholar
  281. Vaughan, J. E., and Peters, A., 1968, A third neuroglial cell type: An electron microscopic study, J. Comp. Neurol. 133: 269.CrossRefGoogle Scholar
  282. Venturini, G., 1973, Enzymic activities and sodium, potassium, and copper concentrations in mouse brain and liver after cuprizone treatment in nitro, J. Neurochem. 21: 1117.Google Scholar
  283. Vogel, F. S., 1951, Demyelinization induced in living rabbits by means of a Iipolyticenzyme preparation, J. Exp. Med. 93: 297.CrossRefGoogle Scholar
  284. Wajda, I. J., 1972, Changes in metabolic processes during pathogenesis of experimental allergic encephalomyelits, in: Handbook of Neurochemistry, Vol. 7 (A. Lajtha, ed.), pp. 221–234, Plenum Press, New York.Google Scholar
  285. Walters, S. N., and Morel’, P., 1981, Effects of altered thyroid states on myelogenesis, J. Neurochem. 36: 1792.PubMedCrossRefGoogle Scholar
  286. Wassenaar, J. S., and Kroon, A. M., 1973, Effects of triethyl tin on different ATP-ases, 5’ nucleotidase, and phosphodiestcrase in grey and white matter of rabbit brain and their relation with brain edema, Fur. Neurol. 10: 349.Google Scholar
  287. Webster, G. R., 1973, Phospholipase A activities in normal and sectioned rat sciatic nerve, J. Neurochem. 21: 873.PubMedCrossRefGoogle Scholar
  288. Webster, H. de F., lilsamer, A. G., and O’Connell, M. F., 1974, hexachlorophene induced myelin lesion in the developing nervous system of Xenopus tadpoles: Morphological and biochemical observations, J. Neuropathol. Exp. Neurol. 33: 144.Google Scholar
  289. Weiner, L. P., 1973, Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus), Arch. Neurol 28: 298.PubMedCrossRefGoogle Scholar
  290. Wender, M., Zgorzalewicz, B., and Wroblewsky, “F., 1971, Activation of amino acids in the brain during experimental allergic encephalomyelitis, Acta Neurol. Scand. 47: 52.Google Scholar
  291. Wender, M., Zgorzalewicz, B., and Piechowski, A., 1971, Cell-free protein synthesis by rat brain in triethyl tin intoxication, Acta Neurol. Scand. 50: 103.CrossRefGoogle Scholar
  292. Wender, M., Adamczewska, Z., Pankrac, J., and Goncerzewicz, A., 1975, Myelin lipids in experimental allergic encephalomyelitis, Neuropathol. Pol. 13: 209.Google Scholar
  293. White, H. B., Galli, C., and Paoletti, R., 1971, Brain recovery from essential fatty acid deficiency in developing rats, J. Neurochem. 18: 869.PubMedCrossRefGoogle Scholar
  294. Wiggins, R. C., 1979, A comparison of starvation models in studies of brain myeltnatton, Neurochem. Res. 4: 827.PubMedCrossRefGoogle Scholar
  295. Wiggins, R. C., 1982, Myelin development and nutritional insufficiency, Brain Res. Rev. 4: 151.CrossRefGoogle Scholar
  296. Wiggins, R. C., and Fuller, G. N., 1978, Early postnatal starvation causes lasting brain hypomyelinatmon, J. Neurochem. 30: I231.CrossRefGoogle Scholar
  297. Wiggins, R. C., and Fuller, G. N., 1979, Relative synthesis of myelin in different brain regions of postnatally undernourished rats, Brain Res. 162: 103.PubMedCrossRefGoogle Scholar
  298. Wiggins, R. C., Benjamins, J. H., Krigrnan, M. R., and Morell, P., 1971, Synthesis of myelin proteins daring starvation, Bra in Res. 80: 345.CrossRefGoogle Scholar
  299. Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigrnan, M. R., and Morel’, P., 1976, Myelin synthesis during postanatal nutritional deprivation and subsequent rehabilitation. Brain Res. 107: 257.PubMedCrossRefGoogle Scholar
  300. Wightman, P. D., Dahlgren, M. E., Davies, P., and Bonney, R. J., 1981. “Ehe selective release of phospholipase A., by resident mouse peritoneal macrophages, Bioehern. J. 200: 441.Google Scholar
  301. Williams, R. M., Lees, M. B., Cambi, F., and Macklin, W. B., 1982, Chronic experimental allergic encephalomyelitis induced in rabbits with bovine white matter proteolipid apoprotein, J. Neuropathol. Exp. Neuril. 41: 508.CrossRefGoogle Scholar
  302. Windebank, A. J., McCall, J. T., Htinder, H. G., and Dyck, P. J., 1980, The endoneurial content of lead related to the onset and severity of segmental demyelination, J. Neuropathol. Exp. Neu rot. 39: 692.CrossRefGoogle Scholar
  303. Winkler, G. F., 1965, to vitro demyelination of peripheral nerve induced with sensitized cells,Attn. N.Y. Acad. Sci. 122:287.Google Scholar
  304. Wisniewski, H., and Raine, C. S., 1971, An ultrastructural study of experimental demyelination and remyelination. V. Central and peripheral nervous system lesions caused by diphtheria toxin, Lab. Invest. 25: 73.PubMedGoogle Scholar
  305. Woelk, H., and Kanig, K., 1974, Phospholipid metabolism in experimental allergic encephalomyelitis: Activity of brain phospholipase Al towards specifically labeled glycerophospholipids, J. Neurochem. 23: 739.PubMedCrossRefGoogle Scholar
  306. Woelk, H., Kanig, K., and Peiler-Ichikawa, K., 1971, Phospholipid metabolism in experimental allergic encephalomyelitis: Activity of mitochondrial phospholipase A., of rat brain towards specifically labeled 1,2-diacyl-1-alk-1’-cnyl-2-acyl-and 1-alkyl-2-acyl-SN-glycero-3-phosphorylcholine, J. Neurochem. 23: 745.CrossRefGoogle Scholar
  307. Wolravens, P., and Chase, H. P., 1969, Influence of thyroid on formation of myelin lipids, J. Neurochem. 16: 1477.CrossRefGoogle Scholar
  308. Wood, J. G., and Dawson, R. M. C., I 974a, Sonie properties of a major structural glycoprotein of sciatic nerve, J. Neurochem. 22: 627.Google Scholar
  309. Wood, J. G., and Dawson, R. M. C., 1971b, Lipid and protein changes in sciatic nerve during Wallerian degeneration, J. Neurochem. 22: 631.CrossRefGoogle Scholar
  310. Wood, J. G. Dawson, R. M. C., and Hauser, H., 1971, Effect of proteolytic attack on the structure of CNS myelin membrane, J. Neurochem. 22: 637.Google Scholar
  311. Wysaoki, S. J., and Segal, W., 1972, Influence of thyroid hormones on enzyme activities of myelinating rat central nervous tissues, Eur. J. Biochem. 28: 183.CrossRefGoogle Scholar
  312. Yao, J. K., Natarajan, V., and Dyck, P. J., 1980, The sequential alterations of endoneurial cholesterol and fatty acid in Wallerian degeneration and regeneration, J. Neurochem. 35: 933.PubMedCrossRefGoogle Scholar
  313. Yates, A. J., and ‘Thompson, D. K., 1978, Ganglioside composition of peripheral nerve undergoing Wallerian degeneration, J. Neurochem. 30: 1649.PubMedCrossRefGoogle Scholar
  314. Yonezawa, T., and Iwanami, H., 1966, An experimental study of thiamine deficiency in nervous tissue using tissue culture techniques, J. Neuropnthol. Exp. Neurol. 25: 362.CrossRefGoogle Scholar
  315. Yonezawa, T., Ishihara, Y., and Matsuyama, 11., 1968, Studies on experimental allergic peripheral neuritis. I. Demyelinating patterns studied in vitro, J. Neuropnthol. Exp. Neurol. 27: 153.Google Scholar
  316. Yu, R. K., tTeno, K., Glaser. G. H., and Tonrtelotte, W. W., 1982, I.ipid and protein alterations of spinal cord and cord myelin of multiple sclerosis, J. Neurochem. 39: 464.Google Scholar
  317. Yusuf, II. K. M., Hague, Z., and Mozaffar, Z., 1981, Effect of malnutrition and subsequent rehabilitation on the development of mouse brain myelin, J. Neurochem. 36: 921.Google Scholar
  318. Zimmerman, A. W., Matthieu, J.-M., Quarles, R. H., Brady, R. O., and Hsu, J. M., 1976, Ilspomyelination in copper-deficient rats, Arch. Neurol. 33: 111.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Marion E. Smith
    • 1
  • Joyce A. Benjamins
    • 2
  1. 1.Department of NeurologyVeterans Administration Medical CenterPalo AltoUSA
  2. 2.Department of Neurology School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations