Advertisement

Myelin pp 337-367 | Cite as

Pathophysiology of Conduction in Demyelinated Nerve Fibers

  • J. M. Ritchie

Abstract

Charcot (1877) first described demyelination as the major pathological lesion in the multiple sclerosis (MS) over 100 years ago, and the clinical signs and symptoms of this disease have been attributed to this anatomical defect. Demyelination is also a common sequela of a multitude of other conditions, many of which initially affect other components of white matter, in particular blood vessels, glia, and axons. Furthermore, myelin may be secondarily damaged by neoplasia, trauma, infarct necrosis, abscess, edema, anoxia, and hemorrhage, and it may also be altered following degeneration of the overlying cortex. There are, however, a significant number of diseases of the central nervous system (CNS) and peripheral nervous systems (PNS) in which myelin itself appears to be primarily and selectively affected (see Chapter 9). But despite extensive neuropathological and neurological information, it is probably fair to say that until about 20 years ago, little was known about the electrophysiology of these demyelinating diseases or about the structure and function of normal myelinated axons and related elements. In the decade that followed, a considerable amount was learned, primarily about pharmacological aspects and the electrophysiology of normal and demyelinated nerve fibers. Along with this development, the clinical electrophysiology of demyelinating diseases has been explored with increasing care.

Keywords

Multiple Sclerosis Conduction Velocity Demyelinating Disease Conduction Block Compound Action Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. D., 1981, Principles of Neurology, McGraw-Hill, New York.Google Scholar
  2. Bennett, M. V. L., 1966, Physiology of electrotonic junctions, Ann. N. Y. Acad. Sci. 137: 509.PubMedCrossRefGoogle Scholar
  3. Berry, C. M., Grundfest, H., and Hinsey, J. C., 1944, The electrical activity of regenerating nerves in the cat, J. Neurophysiol. 7: 103.Google Scholar
  4. Bostock, H., 1963, Conduction changes in mammalian axons following experimental demyelination, in: Abnormal Nerves and Muscles as Impulse Generaters ( W. Culp and J. Ochoa, eds.), pp. 236 - 252, Oxford University Press, New York.Google Scholar
  5. Bostock, H., and Rasminsky, M., 1982, Potassium currents and “potassium nodes” in the spinal roots of dystrophic mice, J. Physiol. (London) 325: 24 P.Google Scholar
  6. Bostock, H., and Sears, T. A., 1976, Continuous conduction in demyelinated mammalian nerve fibers, Nature (London) 263:786.CrossRefGoogle Scholar
  7. Bostock, H., and Sears, T. A., 1978, The internodal axon membrane: Electrical excitability and continuous conduction in segmental demyelination, J. Physiol. (London) 280:273.Google Scholar
  8. Bostock, H., Hall, S. M., and Smith, K. H., 1981a, Demyelinated axons form “nodes” prior to remyelination, J. Physiol. (London) 308:21P.Google Scholar
  9. Bostock, H., Sears, T. A., and Sherratt, R. M., 1981 b, The effects of 4-aminopyridine and tetraethyl-ammonium ions on normal and demyelinated nerve fibers, J. Physiol. (London) 313: 301.Google Scholar
  10. Bostock, H., Sherratt, R. M., and Sears, T. A., 1978, Overcoming conduction failure in demylinated nerve fibers by prolonging the action potentials, Nature (London) 274:385.Google Scholar
  11. Bradley, W. T., and Jenkison, M., 1973, Abnormalities of peripheral nerve in murine muscular dystrophy, J. Neurol. Sci. 18: 227.PubMedCrossRefGoogle Scholar
  12. Bray, G. M., and Aguayo, A. J., 1975, Quantitative ultrastructural studies of the axon-Schwann cell abnormality in spinal nerve roots from dystrophic mice, J. Neuropathol. Exp. Neurol. 34: 517.PubMedCrossRefGoogle Scholar
  13. Brismar, T., 1979, Potential clamp experiments of myelinated nerve fibres from alloxan diabetic rats, Acta Physiol. Scand. 105: 384.PubMedCrossRefGoogle Scholar
  14. Brismar, T., 1980, Potential clamp analysis of the membrane currents in rat myelinated nerve fibers, J. Physiol. (London) 298:171.Google Scholar
  15. Buchthal, F., and Rosenfalck, A., 1966, Evoked action potentials and conduction velocity in human sensory nerves, Brain Res. 3: 1.CrossRefGoogle Scholar
  16. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev. 48: 197.PubMedGoogle Scholar
  17. Charcot, J. M., 1877, Lectures on the Diseases of the Nervous System, New Syndenham Society, London.Google Scholar
  18. Chiu, S. Y., and Ritchie, J. M., 1980, Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres, Nature (London) 284: 170.CrossRefGoogle Scholar
  19. Chiu, S. Y., and Ritchie, J. M., 1981, Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres, J. Physiol. (London) 313: 415.Google Scholar
  20. Chiu, S. Y., and Ritchie, J. M., 1982, Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated amphibian single nerve fibres, J. Physiol. (London) 322: 485.Google Scholar
  21. Chiu, S. Y., Ritchie, J. M., Rogart, R. B., and Stagg, D. 1979, A quantitative description of membrane currents in rabbit myelinated nerve, J. Physiol. (London) 292:149.Google Scholar
  22. Cragg, B. G., and Thomas, P. K., 1964a, Changes in nerve conduction in experimental allergic neuritis, J. Neurol. Neurosurg. Psychiatry 27:106.CrossRefGoogle Scholar
  23. Cragg, B. G., and Thomas, P. K., 1964b, The conduction velocity of regenerated peripheral nerve fibres, J. Physiol. (London) 171:164.Google Scholar
  24. Davis, F. A., 1972, Impairment of repetitive impulse conduction in experimentally demyelinated and pressure-injured nerves, J. Neurol. Neurosurg. Psychiatry 35: 537.PubMedCrossRefGoogle Scholar
  25. Davis, F. A., and Jacobson, S., 1971, Altered thermal sensitivity in injured and demyelinated nerve: A possible model of temperature effect in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry 34: 551.PubMedCrossRefGoogle Scholar
  26. Davis, F. A., and Schauf, C. L., 1981, Approaches to the development of pharmacological interventions in multiple sclerosis, Adv. Neurol. 31: 505.PubMedGoogle Scholar
  27. Dawson, G. D., 1947, Investigations on a patient subject to myoclonic seizures after sensory stimulation, J. Neurol. Neurosurg Psychiatry 10:141.Google Scholar
  28. Dawson, G. D., 1954, Autocorrelation and automatic integration, Electroencephalogr. Clin. Neurophysiol. (Suppl.) 4:26.Google Scholar
  29. Denny-Brown, D., and Brenner, C., 1944a, Paralysis of nerve induced by direct pressure and by tourniquet, Arch. Neurol. Psychiatry (Chicago) 51: 1.CrossRefGoogle Scholar
  30. Denny-Brown, D., and Brenner, C., 1944b, Lesion in peripheral nerve resulting from compression by spring clip, Arch Neurol. Psychiatry (Chicago) 52: 1.CrossRefGoogle Scholar
  31. Duclaux, R., Franzen, O., Chapt, A. B., Kenshalo, D. R., and Stowell, H., 1974, Responses recorded from human scalp evoked by cutaneous stimulation, Brain Res. 78: 279.PubMedCrossRefGoogle Scholar
  32. Feasby, T. E., Bostock, H., and Sears, T. A., 1981, Conduction in regenerating dorsal root fibers, J. Neurol. Sci. 49:439.PubMedCrossRefGoogle Scholar
  33. Foster, R. E., Connors, B. W., and Waxman, S. G., 1982, Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development, Dev. Brain Res. 3: 371.CrossRefGoogle Scholar
  34. Gilliatt, R. W., and Willison, R. G., 1963, The refractory and supernormal periods of the human median nerve, J. Neurol. Neurosurg, Psychiatry 26: 136.Google Scholar
  35. Gledhill, R. F., Harrison, B. M., and McDonald, W. I., 1973, Pattern of rcmyelination in the central nervous system, Nature (London) 244: 443.CrossRefGoogle Scholar
  36. Goldstein, S. S., 1978, Models of conduction in nonuniform axons, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 227 - 236, Raven Press, New York.Google Scholar
  37. Hall, J. I., 1967a, Studies in demyelinated peripheral nerves in guinea pigs with experimental allergic neuritis: A histological and electrophysiological study. Part I. Symptomarology and histological observations, Brain 90: 313.PubMedCrossRefGoogle Scholar
  38. Hall, J. I., 1967, Studies on demyelinated peripheral nerves in guinea pigs with experimental allergic neuritis: A histological and electrophysiological study. Part II. Electrophysiological observations, Brain 90: 313.PubMedCrossRefGoogle Scholar
  39. Halliday, A. M., 1981, Visual evoked potentials in demyelinating disease, Ado. Neurol. 31: 201. Halliday, A. M., and Mason, A. A., 1961, “The effects of hypnotic” anesthesia on cortical responses, J. Neurol. Neurosurg. Psychiatry 27: 300.CrossRefGoogle Scholar
  40. Halliday, A. M., and McDonald, W. I., 1977, Pathophysiology of demyelinating disease, Br. bled. Bull. 33: 21.Google Scholar
  41. Halliday, A. M., McDonald, W. I., and Mushin, J., 1972, Delayed visual evoked response in multiple sclerosis, Lancet 1: 982.PubMedCrossRefGoogle Scholar
  42. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117: 500.Google Scholar
  43. Hopf, H. D., and Eysholdt, M., 1978, Impaired refractory periods of peripheral sensory nerves in multiple sclerosis, Ann. Neurol. 4: 499.PubMedCrossRefGoogle Scholar
  44. Horackova, NI., Nonner, W., and Stsmpfli, R., 1968, Action potentials and voltage clamp currents of single Ranvier nodes, Proc. lot. Union Physiol. 7: 198.Google Scholar
  45. Howe, J. F., Calvin, W. H., and Loeser, J. D., 1976, Impulses reflected from dorsal root ganglia and from focal nerve injuries, Brain Res. 116: 139.PubMedCrossRefGoogle Scholar
  46. Huizar, P., Kuno, M., and Miyata, Y., 1975, Electrophysiological properties of spinal motoneurones of normal and dystrophic mice, J. Physiol. (London) 248: 231.Google Scholar
  47. Huxley, A. F., and Stsmpfli, R., 1949, Evidence for saltatory conduction in peripheral myclinated nerve fibres, J. Physiol. (London) 108: 315.Google Scholar
  48. Kaeser, H. E., 1962, Funktionsprufungen peripherer Nerven bei experimenteller Polyneuritiden und bei der Wallerschen Degeneration, Dtsch. Z. Nervheilkd. 183: 268.Google Scholar
  49. Kaeser, H. E., and Lambert, E. H., 1962, Nerve function studies in experimental poly neuritis, Electroencephalogr. Clin. Neurophysiol. Suppl. 22: 29.Google Scholar
  50. Kimura, J., 1981, Refractory period measurement in the clinical domain, Ada. Neurol. 31: 230.Google Scholar
  51. Kimura, J., Yamada, T., and Rodnitzky, R. L., 1978, Refractory period of hurnan motor nerve fibres, J. Neurol. Neurosurg. Psychiatry 41: 784.PubMedCrossRefGoogle Scholar
  52. Kocsis, J. D., and Waxman, S. G. 1980, Absence of potassium conductance in central myclinated neurons. Nature (London) 287: 348.CrossRefGoogle Scholar
  53. Kocsis, J. D., and Waxman, S. G., 1981, Action potential electrogenesis in mammalian central axons, Adv. Neurol. 31: 299.PubMedGoogle Scholar
  54. Kocsis, J. D., Waxman, S. G., Hildebrand, C., and Ruiz, J. A., 1983, Regenerating mammalian nerve fibre’s: Changes in action potential form and firing characteristics following blockage of potassium conductance, Proc. R. Soc. London Ser. B 217: 77.CrossRefGoogle Scholar
  55. Koles, Z. J., and Rasminsky, M., 1972, A computer simulation of conduction in demyelinated nerve fibers, J. Physiol. (London) 227: 351.Google Scholar
  56. Kurth, A., and Abdul-Kader, M., 1972 Clinical and electrophysiological studies of diphtheritic neuritis in Jordan, J. Neurol. Sei. 42: 243.Google Scholar
  57. La Fontaine, S., Rasminsky, M., Saida, T., and Sumner, A. J., 1982, Conduction block in rat myclinated fibres following acute exposure to anti-galactocerebrosida serum, J. Physiol. (London) 323: 287.Google Scholar
  58. Landon, D. N., and Hall, S., 1976, The rnyelinated nerve fibre, in: The Peripheral Nerve (D. N. Landon, cd.), pp. 1 - 105, Wiley, New York.Google Scholar
  59. Landon, D. N., and Williams, P. L., 1963, Ultrastructm’e of the node of Ranvier, Nature (London) 199: 575.CrossRefGoogle Scholar
  60. Lehmann, H. J., 1973, Sequential dcmyelination and changes in nerve conduction in experimental circumscribed neuropat by, New Dee. Electromyogr. Clin. Neurophysiol. 2: 145.Google Scholar
  61. Lehmann, H. J., and Ule, G., 1964a, Electrophysiological findings and structural changes in circumscript inflammation of peripheral nerves, Prog. Brain Res. 6: 169.CrossRefGoogle Scholar
  62. Lehmann, H. J., and tile, G. 1964b, tlltrastructurs’ and conduction velocity in demyelinated nerve fibres, in: Society Proceedings, International Meeting on Electromyography, Copenhagen, June 2I-23, 1963, Etectroeacephalogr. Clin. Neurophysiol. 17: 98.Google Scholar
  63. Lehmann, H. J., Lehmann, G., and Takmann, W., 1971, Refraktarperiode and Uebermittlung von Serienimpulsen im N.tibialis des Meerschweinchens bei experimentelles allergischer Neuritis, Z. Neurol. 199: 67.PubMedCrossRefGoogle Scholar
  64. Ludwin, S. K., 1981, Pathology of demyelination and remyelination, Adz,. Neurol. 31: 123.Google Scholar
  65. Matthews, Xti’. B., 1975, Paroxysmal symptoms in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry 38: 617.Google Scholar
  66. Matthews, W. B., and Small, D. G., 1979, Serial recording of visual and somarosensory evoked potentials in multiple sclerosis, J. Neural. Sci. 40: 11 - 21.CrossRefGoogle Scholar
  67. Mayer, R. F., 1971, Conduction velocity in the central nervous system of the cat during experimental demyelination and remyelination, lot. J. Neurosci. 1: 287.Google Scholar
  68. Mayer, R. F., and Denny-Brown, D., 1964, Conduction velocity in peripheral nerve during experimental demyelination of the cat, Neurology (Minneapolis) 14: 714.CrossRefGoogle Scholar
  69. McDonald, W. I., 1963, The effects of experimental demyelination on conduction in peripheral nerve: A histological and electrophysiological study. II. Electrophysiological observations, Brain 86: 501.PubMedCrossRefGoogle Scholar
  70. McDonald, %V. I., 1971, Pathophysiology in multiple sclerosis, Brain 97: 179.CrossRefGoogle Scholar
  71. McDonald, W. I., 1980, Physiological consequences of deryelination, in: The Physiology of Peripheral Nerve Disease ( A. J. Sumner, ed.), pp. 265 - 286, W. B. Saunders, Philadelphia.Google Scholar
  72. McDonald, W. I., and Kocen, R S., 1975, Diphtheritic neuropathy, in: Peripheral Neuropathy (P. G. Dyck, P. K. Thomas, and E. A. Lambert, eds.), pp., W. B. Saunders, Philadelphia.Google Scholar
  73. McDonald, W. I., and Sears, T. A., 1970a, Focal experimental demyelination in the central nervous system, Brain 93: 575.PubMedCrossRefGoogle Scholar
  74. McDonald, W. I., and Sears, T. A., 1970b, The effects of experimental demyelination on conduction in the central nervous system, Brain 93: 583.PubMedCrossRefGoogle Scholar
  75. Morgan-Hughes, J. A., 1968, Experimental diphtheritic neuropathy: A pathological and electrophysiological study, J. Neurol. Sci. 7: 157.PubMedCrossRefGoogle Scholar
  76. Nuwer, M. R., and Namerow, N. S., 1981, Somatosensory evoked potential testing in multiple sclerosis, Ads’. Neurol. 31: 183.Google Scholar
  77. Osterman, P. 0., and Wester burg, C.-E., 1975, Paroxysmal attacks in multiple sclerosis, Brain 98: 189.Google Scholar
  78. Pencek, T. L., Schaub C. L., Low, P. A., Eisenberg, B., and Davis, F. A., 1980, Disruption of the perineurium in amphibian peripheral nerve: Morphology and physiology, Neurology 30: 593.PubMedCrossRefGoogle Scholar
  79. Quick, D. C., and Waxman, S. G., 1977, Specific staining of the axon membrane at nodes of Ranvier with ferric ion and fermocyanide, J. Neurol. Sci. 31: 1.PubMedCrossRefGoogle Scholar
  80. Raine, C. S., 1977, Morphological aspects of myelin and rwyelination, in: Myelin ( P. Morell, ed.), pp. 1 - 49, Plenum Press, New York.Google Scholar
  81. Rang, H. P., and Ritchie, J. M., 1968, On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations, J. Physiol. (London) 196: 183.Google Scholar
  82. Rasminsky, M., 1973, The effects of temperature on conduction in demyelinated single nerve fibers, Arch. Neurol. (Chicago) 28: 287.CrossRefGoogle Scholar
  83. Rasminsky, M., 1978a, Ectopic generation of impulses and cross-talk in spinal nerve roots of ’’“dystrophic” mice, Ann. Neurol. 3: 351.Google Scholar
  84. Rasminsky, M., 1978b, Physiology of conduction in demyelinated axons, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 361 - 376, Raven Press, New York.Google Scholar
  85. Rasminsky, M., 1980, Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice, J. Physiol. (London) 305: 151.Google Scholar
  86. Rasminsky, M., 1981, Hyperexcitability of pathologically myelinated axons and positive symptoms in multiple sclerosis, Adze. Neurol. 31: 289.Google Scholar
  87. Rasminsky, M., and Sears, L. A., 1972, Internodal conduction in undissected demyelinated nerve fibres, J. Physiol. (London) 227: 323.Google Scholar
  88. Rasminsky, M., Kearney, R. E., Aguayo, A. J., and Bray, G. M., 1978, Conduction of nervous impulses in spinal roots and peripheral nerves of dystrophic mice, Brain Res. 143: 71.PubMedCrossRefGoogle Scholar
  89. Raymond, S. A., and Lettvin, J. Y., 1978, Aftereffects of activity in peripheral axons as a clue to nervous coding, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 203 - 225, Raven Press, New York.Google Scholar
  90. Ritchie, J. M., 1981, Potassium channels in regenerating and immature rabbit myelinated nerve, J. Physiol. (London) 322: 20 P.Google Scholar
  91. Ritchie, J. M., 1982, Sodium and potassium channels in regenerating and developing mammalian myelinated nerve fibres, Proc. R. Soc. London B, 215: 273.CrossRefGoogle Scholar
  92. Ritchie, J. M., and Rogart, R. B. I977a, The density of sodium channels in the mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath, Proc. Natl. Acad. Sci. U.S.A. 74: 211.Google Scholar
  93. Ritchie, J. M., Rang, H. P., and Pellegrino, R. 1981, Sodium and potassium channels in demyelinated and remyelinated mammalian nerve, Nature (London) 294: 257.CrossRefGoogle Scholar
  94. Rose, A., 1981, Multiple sclerosis: An overview, Adv. Neurol. 31: 3.PubMedGoogle Scholar
  95. Saida, K., Saida, T., Brown, M. J., and Silberberg, D. H., 1979, In vivo demyelination induced by intraneural injection of antigalactocerebroside serum, Am. J. Pathol. 95: 99.Google Scholar
  96. Saida, K., Sumner, A. J., Saida, T., Brown, M. J., and Silberberg, D. H., 1980, Antiserum-mediated demyelination: Relationship between remyelination and functional recovery, Ann. Neurol. 8: 12.PubMedCrossRefGoogle Scholar
  97. Schauf, C. L., and Davis, F. A., 1974, Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents, J. Neurol. Neurosurg. Psychiatry 37: 152.PubMedCrossRefGoogle Scholar
  98. Sears, T. A., and Bostock, H., 1981, Conduction failure in demyelination: Is it inevitable?, Adv. Neurol. 31: 357.PubMedGoogle Scholar
  99. Sherratt, R. M., Bostock, H., and Sears, T. A., 1980, Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres, Nature (London) 283: 570.CrossRefGoogle Scholar
  100. Smith, K. J., 1980, A sensitive effort for the detection and quantification of conduction deficits in nerve, J. Neurol. Sci. 48: 191.PubMedCrossRefGoogle Scholar
  101. Smith, K. J., and Hall, S. M., 1980, Nerve conduction during peripheral demyelination and remyelination, J. Neurol. Sci. 48: 201.PubMedCrossRefGoogle Scholar
  102. Smith, K. J., and Schauf, C. L., 1981, Effects of gallamine triethiodide (“F”“laxedil”) on membrane currents in amphibian and mammalian myelinated nerve, J. Pharmacol. Exp. Thee. 217: 719.Google Scholar
  103. Smith, K. J., Bostock, H., and Hall, S. M., 1982a, “Node” formation precedes remyelination, Trends Neurosci. 5:196.Google Scholar
  104. Smith, K. J., Bostock, H., and Hall, S. M., 19826, Saltatory conduction precedes remyelination in axon demyelinated with lysophosphatidyl choline, J. Neurol. Sci. 54: 13 - 31.Google Scholar
  105. Smith, R. S., and Koles, Z. J., 1970, Myelinated nerve fibres: Computed effect of myelin thickness on conduction velocity, Am. J. Physiol. 219: 1256.PubMedGoogle Scholar
  106. Stockard, J. J., and Sharbrough, F. W., 1980, Unique contributions of short-latency auditory and somatosensory evoked potentials to neurologic diagnosis, in: Clinical Uses of Cerebral, Brain Stem and Spinal Somatosensory Evoked Potentials (J. E. Desmedt, ed.), pp. 231 - 263, S. Karger, Basel.Google Scholar
  107. Sumner, A. J., Saida, K., Saida, T., Silberberg, D. H., and Asbury, A. K., 1981, Acute conduction block associated with experimental antiserum-mediated demyelination of peripheral nerve, Ann. Neurol. 11:469.Google Scholar
  108. Sumner, A., Said, G., Idy, I., and Metral, 1982a, Electrophysiological and morphological effects of the injection of Guillain-Barré sera in the sciatic nerve of the rat, Rev. Neurol. (Paris) 138: 17.Google Scholar
  109. Sumner, A., Siad, G., Idy, I., and Metral, S., 1982b, Demyelinative conduction block produced by intraneural injection of human Guillain-Barré serum into rat sciatic nerve, Neurology 32: A106.Google Scholar
  110. Suzuki, K., Andrews, J. M., Maltz, J. M., and Terry, R. D., 1969, Ultrastructural studies of multiple sclerosis, Lab. Invest. 20: 444.PubMedGoogle Scholar
  111. Tasaki, I., 1953, Nervous Transmission, Charles C Thomas, Springfield, Illinois.Google Scholar
  112. Tasaki, I., 1955, New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber, Am. J. Physiol. 181: 639.PubMedGoogle Scholar
  113. Waxman, S. G., 1970, Closely spaced nodes of Ranvier in the teleost brain, Nature (London) 227:283. Waxman, S. G., 1972, Regional differentiation of the axon: A review with special reference to the concept of the multiplex neuron, Brain Res. 47: 269.CrossRefGoogle Scholar
  114. Waxman, S. G., 1975, Integrative properties and design principles of axons, Int. Rev. Neurobiol. 18:1. Waxman, S. G., 1977, Conduction in myelinated, unmyelinated, and demyelinated fibers, Arch. Neurol. 34: 585.CrossRefGoogle Scholar
  115. Waxman, S. G., 1981, Clinicopathological correlations in multiple sclerosis and related diseases, Adv. Neurol. 31: 169.PubMedGoogle Scholar
  116. Waxman, S. G., 1982, Membranes, myelin, and the pathophysiology of multiple sclerosis, N. Engl. J. Med. 306: 1529.PubMedCrossRefGoogle Scholar
  117. Waxman, S. G., and Brill, M. H., 1978, Conduction through demyelinated plaques in multiple sclerosis: Computer simulations of facilitation by short internodes, J. Neurol Neurosurg. Psychiatry 41: 408.PubMedCrossRefGoogle Scholar
  118. Waxman, S. G., and Foster, R. E., 1980, Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibres, Brain Res. Rev. 2: 205.CrossRefGoogle Scholar
  119. Waxman, S. G., and Swadlow, H. A., 1977, The conduction properties of axons in central white matter, Prog. Neurobiol. 8: 297.PubMedCrossRefGoogle Scholar
  120. Waxman, S. G., and Wood, S. L., 1984, Impulse conduction in inhomogeneous axons: effect of variation of voltage-sensitive conductances on invasion of demyelinated axon segments and preterminal fibers, Brain Res. (In Press).Google Scholar
  121. Waxman, S. G., Brill, M. H., Geschwind, N., Sabin, T. D., and Lettvin, J. Y., 1976, Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies, J. Neurol. Sci., 29: 39.PubMedCrossRefGoogle Scholar
  122. Waxman, S. G., Kocsis, J. D., Brill, M. H., and Swadlow, H. A., 1979, Dependence of refractory period measurements on conduction distance: A computer simulation analysis, Electroencephalogr. Clin. Neurol. Physiol. 47:717.Google Scholar
  123. Weiner, L. P., Waxman, S. G., Stohlman, S. A., and Kwan, A., 1980, Remyelination following viral-induced demyelination: Ferric ion-ferocyanide staining of nodes of Ranvier within the CNS, Ann. Neurol. 8: 580.PubMedCrossRefGoogle Scholar
  124. Williams, P. L., and Landon, D. N., 1963, Paranodal apparatus of peripheral nerve fibres of mammals, Nature (London) 198: 670.CrossRefGoogle Scholar
  125. Wood, S. L., and Waxman, S. G., 1982, Conduction in demyelinated nerve fibers: Computer simulations of the effects of variation in voltage sensitive conductances, in: Proc. IV Ann. IEEE Frontiers of Engineering in Health Care 11.7.1:424.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. M. Ritchie
    • 1
  1. 1.Department of PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations