Cardiology pp 547-550 | Cite as

Substrate Effects in Myocardial Ischemia

  • Lionel H. Opie

It is now just 20 years ago since Sodi-Pallares (1962) produced his provocative idea that myocardial ischemic damage could be minimized by replacing potassium loss from ischemic cells by a solution of glucose-insulin and potassium. Although his ideas are still being evaluated, it is interesting to see how even controversial concepts can lead to the evolution of new and important hypotheses.


Free Fatty Acid Acute Myocardial Infarction Glycolytic Flux Serum Free Fatty Acid Experimental Myocardial Infarction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Corr, P. B., Gross, R. W., Sobel, B. E., (in press), Arrhythmogenic amphiphilic lipids and the myocardial cell membrane, Editorial, J.Mol.Cell.Cardiol.Google Scholar
  2. Dalby, A. J., Bricknell, O. L., and Opie, L. H., 1981, Effect of glucose-insulin-potassium infusions on epicardial ECG changes and on myocardial metabolic changes after coronary artery ligation in dogs, Cardiovasc.Res.., 15:588–598.PubMedCrossRefGoogle Scholar
  3. de Leiris, J., Opie, L. H., and Lubbe, W. F., 1975, Effects of free fatty acid and glucose on enzyme release in experimental myocardial infarction, Nature 253:746–747.PubMedCrossRefGoogle Scholar
  4. Heng, M. K., Norris, R. M., Peter, T., Nisbet, H. D., and Singh, B. N., 1978, The effects of glucose-insulin-potassium on experimental myocardial infarction in the dog, Cardiovasc. Res. 12:429–435.PubMedCrossRefGoogle Scholar
  5. Katz, A. M., (in press), Membrane-derived lipids and the pathogenesis of ischemic myocardial damage, Editorial, J.Molec.Cell. Cardiol.Google Scholar
  6. Kurien, V. A., Yates, P. A., and Oliver, M. F., 1971, The role of free fatty acids in the production of ventricular vulnerability following acute coronary artery occlusion in the dog, J.Molec.Cell.Cardiol.. 11:31–34.Google Scholar
  7. Liedtke, A. J., Nellis, S. H., and Whitesell, L. H., 1982, Effects of regional ischemia on metabolic function in adjacent aerobic myocardium, J.Molec.Cell.Cardiol. 14:195–205.CrossRefGoogle Scholar
  8. Oliver, M. F., Kurien, V. A., and Greenwood, T. W., 1968, Relation between serum free fatty acids and arrhythmias and death after myocardial infarction, Lancet 1:710–715.PubMedCrossRefGoogle Scholar
  9. Rackley, C. E., Russell, R. O., Rogers, W. J., Mantle, J. A., and McDaniel, H. G., 1979, Glucose-insulin-potassium infusion in acute myocardial infarction. Review of clinical experience, Postgrad.Med.. 65:93–99.PubMedGoogle Scholar
  10. Rovetto, M. J., Lamberton, W. F., and Neely, J. R., 1975, Mechanism of glycolytic inhibition in ischemic rat hearts, Circ.Res. 37:742–751.PubMedCrossRefGoogle Scholar
  11. Russell, D. C, and Oliver, M. F., 1979, The effect of intravenous glucose on ventricular vulnerability following acute coronary artery occlusion in the dog, J.Molec.Cel.Cardiol. 11:31–44.CrossRefGoogle Scholar
  12. Sobel, B. E., Corr, P. B., Robison, A. K., Goldstein, R. A., Witkowski, F. X., and Klein, M. S., 1978, Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium, J.Clin.Invest. 62:546–553.PubMedCrossRefGoogle Scholar
  13. Sodi-Pallares, D., Testelli, M. R., Fishleder, F. L., Bisteni, A., Medrano, G. A., Friedland, C., and De Micheli, A., 1962, Effects of an intravenous infusion of a potassium-glucose, insulin solution on the electro-cardiographic signs of myocardial infarction. A preliminary clinical report, Amer.J. Cardiol. 9:166–181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Lionel H. Opie
    • 1
  1. 1.MRC Ischemic Heart Disease Research Unit Department of MedicineGroote Schuur Hospital and University of Cape TownObservatorySouth Africa

Personalised recommendations