Cardiology pp 117-139 | Cite as

Progress in Radionuclide Methods

  • L. E. Feinendegen

Abstract

Radioisotopes are tools for observing the body at the molecular level of organisation practically without discomfort and risk to the patient. In this context, the method of imaging, for example, with a fast gamma-camera, is not an end in itself, but a first step for functional studies particularly at the molecular and cellular level in small body volumes. Thus, radioisotopes have generally proved useful for establishing diagnosis, for description and quantification of findings involving metabolic reactions in the evolution of disease and for control of therapy. Nuclear medicine has also become accepted in cardiology.

Keywords

Left Ventricular Ejection Fraction Myocardial Metabolism Heptadecanoic Acid Gate Blood Pool Left Ventricular Aneurysm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Okada, G. M. Pohost, H. D. Kirshenbaum, F. G. Kushner, Ch. A. Boucher, P. C. Block, and H. W. Strauss, Radionuclidedetermined change in pulmonary blood volume with exercise: improved sensitivity of multigated blood pool scanning in detecting coronary artery disease, N.Engl.J.Med., 301:569 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Höck, P. Schürch, Ch. Freundlieb, K. Vyska, N. Kunz, L. E. Feinendegen, and W. Hollmann, Globale and regionale kardiopulmonale Blutvolumen-Anderungen unter kontinuierlicher Belastung, Nucl.-Med., 19: 166 (1980).Google Scholar
  3. 3.
    A. Höck, K. Vyska, Ch. Freundlieb, L. E. Feinendegen, H. P. Schürch, H. Breitbach, and W. Hollmann, Cardiac, pulmonary and hepatic blood volumes during exercise, in: “Nuklearmedizin,” H. A. E. Schmidt and H. Rösler, eds., F. K. Schattauer Verlag, Stuttgart - New York (1982).Google Scholar
  4. 4.
    G. Hoffmann and N. Kleine, Eine neue Methode zur unblutigen Messung des Schlagvolumens am Menschen uber viele Tage mit Hilfe von radioaktiven Isotopen, Verhandl.Dtsch.Ges. Kreislaufforschg., 31:93 (1965).CrossRefGoogle Scholar
  5. 5.
    W. E. Adam, F. Bitter, and W. J. Lorenz, Der Computer als Hilfsmittel zur Verbesserung der nuklearmedizinischen Funktionsdiagnostik, in: “Computers in Radiology,” R. de Haene and A. Wambersie, eds., Karger, Basel (1970).Google Scholar
  6. 6.
    H. W. Strauss, B. L. Zaret, P. J. Hurley, T. K. Natarjan, and B. Pitt, A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization, Amer.J.Cardiol., 28:575 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    H. N. Wagner, P. Rigo, R. H. Baxter, P. O. Alderson, K. H. Douglass, and D. F. Housholder, Monitoring ventricular function at rest and during exercise with a non-imaging nuclear detector, Amer.J.Cardiol., 43:975 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    R. A. Wilson, P. J. Sullivan, R. H. Moore, J. S. Zielonka, N. Alpert, C. A. Boucher, K. A. McKusick, and H. W. Strauss, The vest — validation of a device for the ambulatory measurement of ejection fraction, J.Nucl.Med., 23:47 (1982).Google Scholar
  9. 9.
    J. H. Caldwell, G. W. Hamilton, S. G. Sorensen, J. L. Ritchie, D. L. Williams, and J. W. Kennedy, Detection of coronary artery disease with radionuclide techniques: comparison of rest-exercise thallium imaging and ejection fraction response, Circulation 61 : 610 (1980).Google Scholar
  10. 10.
    J. Borer, S. Bacharach, M. Green, P. Phillips, C. Hochreiter, and H. Goldberg, Uses and limitations of radionuclide cineangiography in patients with coronary and valvular heart diseases, IX World Congress of Cardiology, Moscow (1982).Google Scholar
  11. 11.
    W. E. Adam, A. Tarkowska, F. Bitter, M. Stauch, and H. Geffers, Equilibrium (gated) radionuclide ventriculography, Cardiovascular Radiology, 2: 161 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    W. Strauss, Nuclear cardiology: the challenge of the eighties, IX World Congress of Cardiology, Moscow (1982).Google Scholar
  13. 13.
    R. Slutsky, W. Hooper, K. Gerber, A. Battler, V. Froelicher, W. Ashburn, and J. Karliner, Assessment of right ventricular function at rest and during exercise in patients with coronary heart disease: a new approach using equilibrium radionuclide angiography, Am.J.Cardiol., 45:63 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    T. J. Ruth, R. M. Lambrecht, and A. P. Wolf, Cyclotron isotopes and radiopharmaceuticals: XXX. aspects of production, elution, and automation of <sup>81</sup>Rb/<sup>81</sup>Kr generators, Int.J.Appl. Radiat.Isot., 31:51 (1980).CrossRefGoogle Scholar
  15. 15.
    D. S. Dymond, A. T. Elliott, W. Flatman, J. Caplin, R. Bett, J. G. Cuninghame, H. E. Sims, and H. H. Willis, First pass radionuclide angiography in man using gold-195m (T1/2 30.5 seconds), J.Nucl.Med., 23:71 (1982).Google Scholar
  16. 16.
    P. Rigo, Ph. O. Alderson, R. M. Robertson, L. C. Becker, and H. N. Wagner, Jr., Measurement of aortic and mitral regurgitation by gated cardiac blood pool scans, Circulation, 60:306 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Slutsky, J. Karliner, D. Ricci, R. Kaiser, M. Pfisterer, D. Gordon, K. Peterson, and W. Ashburn, Left ventricular volumes by gated equilibrium radionuclide angiography: a new method, Circulation 60:556 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    A. H. Maurer, J. A. Siegel, B. Dennenberg, P. S. Robbins, B. Carabello, A. Gash, J. F. Spann, and L. S. Malmud, Absolute left ventricular volumes by a noninvasive in vivo esophageal transmission measurement, J.Nucl.Med., 23:70 (1982).Google Scholar
  19. 19.
    L. E. Feinendegen, V. Becker, K. Vyska, H. Schicha, and L. Seipel, Minimal cardiac transit times — diagnostic radiocardiography in heart disease, J.Nucl.Biol.Med., 16:211 (1972).PubMedGoogle Scholar
  20. 19.
    L. E. Feinendegen, V. Becker, K. Vyska, H. Schicha, and L. Seipel, Minimal cardiac transit times — diagnostic radiocardiography in heart disease, J.Nucl.Biol.Med., 16:211 (1972).PubMedGoogle Scholar
  21. 20.
    L. E. Feinendegen, K. Vyska, H. Schicha, V. Becker, and Chr. Freundlieb, The minimal transit times, Der Nuklearmediziner Supp1.93 (1979).Google Scholar
  22. 21.
    P. Bosiljanoff, H. Herzog, A. Schmid, D. Sommer, K. Vyska, and L. E. Feinendegen, Automatisches Auswerte-programm fur die Bestimmung der minimalen cardialen Transitzeiten (MTTs), KFA-JUEL-Report, in press (1982).Google Scholar
  23. 22.
    H. Schicha, K. Vyska, V. Becker, and L. E. Feinendegen, Radiocardiograph of minimal transit times. A useful diagnostic procedure, in: “Dynamic Studies with Radioisotopes in Medicine,” IAEA Wien (1975).Google Scholar
  24. 23.
    P. Bosiljanoff, V. Becker, K. Vyska, and L. E. Feinendegen, Assessment of combined gated blood pool studies and minimal cardiac transit time measurement in nuclear cardiology, in: “Nuklearmedizin,” H. A. E. Schmidt and H. Rösler, eds., F. K. Schattauer Verlag, Stuttgart - New York (1982).Google Scholar
  25. 24.
    P. Bosiljanoff, V. Becker, K. Vyska, and L. E. Feinendegen, Development and testing of a compact radiocardiograph for measuring minimal cardiac transit times (MTT), in: “Nuklearmedizin,” H. A. E. Schmidt, and G. Riccabona, eds., F. K. Schattauer Verlag, Stuttgart - New York (1980).Google Scholar
  26. 25.
    J. L. Ritchie, G. W. Hamilton, and F. J. T. Wackers, “Thallium201 myocardial imaging,” Raven Press, New York (1978).Google Scholar
  27. 26.
    D. E. Johnstone, M. J. Sands, H. J. Berger, L. A. Reduto, A. B. Lachman, F. J. Wackers, L. S. Cohen, A. Gottschalk, and B. L. Zaret, Comparison of exercise radionuclide angiocardiography and thallium-201 myocardial perfusion imaging in coronary artery disease, Am.J.Cardiol., 45: 1113 (1980).PubMedCrossRefGoogle Scholar
  28. 27.
    E. Deutsch, K. Libson, J. -L. Vanderheyden, D. L. Nosco, V. J. Sodd, and H. Nishiyama, Chemistry and preparation of the potential myocardial imaging agent [<sup>99m</sup>Tc(dmpe)<sub>2</sub>C1<sub>2<sub>]<sup>+</sup>(Tc-99m DMPE), J.Nucl.Med., 23:9 (1982).Google Scholar
  29. 28.
    R. A. Goldstein, M. S. Klein, M. J. Welch, and B. E. Sobel, External assessment of myocardial metabolism with <sup>11</sup>C-palmitate in vivo, J.Nucl.Med., 21:342 (1980).PubMedGoogle Scholar
  30. 29.
    E. Henze, R. G. Grossman, S. C. Huang, J. R. Barrio, M. E. Phelps and H. R. Schelbert, Myocardial uptake and clearance of C-11 palmitic acid in man: ef f ects of substrate availability and cardiac work, J.Nucl.Med., 23: 12 (1982).Google Scholar
  31. 30.
    L. E. Feinendegen, K. Vyska, Chr. Freundlieb, H. J. Machulla, G. Kloster, and G. Stöcklin, Non-invasive analysis of metabolic reactions in body tissues, the case of myocardial fatty acids, Europ.J.Nucl.Med., 6: 191 (1981).CrossRefGoogle Scholar
  32. 31.
    H. -J. Machulla, G. Stöcklin, Ch. Kupfernagel, Chr. Freundlieb, A. Höck, K. Vyska, and L. E. Feinendegen, Comparative evaluation of fatty acids labeled with C-11, C 1–34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communication, J.Nucl.Med., 19:298 (1978).PubMedGoogle Scholar
  33. 32.
    J. R. Evans, R. W. Gunton, R. G. Baker, D. S. Beanlands, and J. C. Spears, Use of radioiodinated fatty acids for photoscans of the heart, Circ.Res. 16: 1 (1965).PubMedCrossRefGoogle Scholar
  34. 33.
    N. D. Poe, G. E. Robinson, and N. S. MacDonald, Myocardial extraction of labeled long-chain fatty acid analogs, Proc.Soc.Exp.Biol.Med., 148:215 (1975).PubMedGoogle Scholar
  35. 34.
    Chr. Freundlieb, A. Höck, K. Vyska, L. E. Feinendegen, H. -J. Machulla, and G. Stöcklin, Myocardial imaging and metabolic studies with (17–123-I)iodoheptadecanoic acid, J.Nucl.Med., 21: 1043 (1980).PubMedGoogle Scholar
  36. 35.
    H. J. Daus, S. N. Reske, K. Vyska, and L. E. Feinendegen, Pharmacokinetics of ω-(p-<sup>131</sup>I-phenyl)-pentadecanoic acid in heart, in: “Nuklearmedizin,” H. A. E. Schmidt, F. Wolf, and J. Mahlstedt, eds., F. K. Schattauer Verlag, Stuttgart - New York (1981).Google Scholar
  37. 36.
    S. N. Reske, H. J. Machulla, D. Aurich, H. J. Biersack, H. Simon, D. Koischwitz, R. Knopp, and C. Winkler, Myocardial turnover of p-<sup>123</sup>I-phenylpentadecanoic acid (I-PPA) in patients with valvular heart and coronary artery disease, in: “Radioaktive Isotope in Klinik und Forschung,” R. Höfer, H. Bergmann, eds., Verlag H. Egermann, Wien (1982).Google Scholar
  38. 37.
    R. Dudczak, R. Schmoliner, P. Angelberger, K. Kletter, and H. Frischauf, Myocardial studies with I-123p-phenylpentadecanoic acid (PPA) in patients with coronary artery disease (CAD) and cardiomyopathy (CMP), J.Nucl.Med., 23:35 (1982).Google Scholar
  39. 38.
    D. M. Solheim, <sup>123</sup>I-erucic acid: a promising substance for myocardial imaging, in: “Radioaktive Isotope in Klinik und Forschung,” R. Höfer, H. Bergmann, eds., Verlag H. Egermann, Wien (1982).Google Scholar
  40. 39.
    F. F. Knapp, Jr., M. M. Goodman, G. W. Kabalka, K. A. R. Sastry, and A. P. Callahan, Synthesis and evaluation of I-125 (*I)-labeled 18-iodo-13-tellura-17-octadecenoic acid, J.Nucl.Med., 23 : 10 (1982).Google Scholar
  41. 40.
    E. Livni, D. R. Elmaleh, S. Levy, D. A. Varnum, G. L. Brownell, and H. J. Strauss, Carbon-11 labeled beta methyl fatty acids as potential tracers for myocardial metabolism, J.Nucl.Med., 23:9 (1982).Google Scholar
  42. 41.
    A. Höck, Ch. Freundlieb, K. Vyska, L. E. Feinendegen, R. Rost, P. M. Schürch, and W. Hollmann, The influence of physical training on fatty acid metabolism in patients with coronary artery disease, in: “Nuklearmedizin,” H. A. E. Schmidt and H. Rösler, eds., F. K. Schattauer Verlag, Stuttgart - New York (1982).Google Scholar
  43. 42.
    R. Dudczak, R. Schmoliner, D. K. Derfler, P. Angelberger, K. Kletter, U. Losert, and H. Frischauf, Effect of ischemia and pharmacological interventions on the myocardial elimination of I-123 heptadecanoic acid (HDA), J.Nucl.Med., 23:34 (1982).Google Scholar
  44. 43.
    A. Höck, Chr. Freundlieb, K. Vyska, L. E. Feinendegen, B. Lösse, and R. Erbel, Uptake and elimination rates of labelled fatty acids in patients with cardiomyopathy, in: “Nuklearmedizin,” H. A. E. Schmidt, F. Wolf, J. Mahlstedt, eds., F. K. Schattauer Verlag, Stuttgart - New York (1981).Google Scholar
  45. 44.
    A. Höck, Chr. Freundlieb, K. Vyska, B. Lösse, R. Erbel, and L. E. Feinendegen, Myocardial imaging and metabolic studies with (17-<sup>123</sup>I) iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy, J.Nucl.Med., in press (1982).Google Scholar
  46. 45.
    R. C. Marshall, S. C. Huang, J. H. Tillisch, R. Carson, D. Plummer, H. R. Schelbert, and M. E. Phelps, Development of regional criteria to assess the significance of changes in 18-fluoro-deoxyglucose (F) and n-13-ammonia (N) activities evaluated with positron computed tomography (PCT), J.Nucl.Med., 23:33 (1982).Google Scholar
  47. 46.
    O. Ratib, M. E. Phelps, S. C. Huang, E. Henze, C. Selin, and H. R. Schelbert, Noninvasive measurement of the myocardial glucose metabolic rate with positron tomography and fluoro18 deoxyglucose, in: “Nuklearmedizin,” H. A. E. Schmidt, H. Rösler, eds., F. K. Schattauer Verlag, Stuttgart - New York (1982).Google Scholar
  48. 47.
    A. P. Selwyn, Personal communication (1982).Google Scholar
  49. 48.
    A. S. Gelbard, R. S. Benua, R. E. Reiman, J. M. McDonald, J. J. Vomero, and J. S. Laughlin, Imaging of the human heart after administration of L-(N-13) Glutamate, J.Nucl.Med., 21:988 (1980).PubMedGoogle Scholar
  50. 49.
    P. V. Harper, K. A. Lathrop, H. Krizek, N. Lembares, V. Stark, and P. B. Hoffer, Clinical feasibility of myocardial imaging with <sup>13</sup>NH<sub>3</sup>, J.Nucl.Med., 13:278 (1972).PubMedGoogle Scholar
  51. 50.
    S. C. Huang, M. Schwaiger, R. E. Carson, E. Henze, E. J. Hoffman, M. E. Phelps, and H. R. Schelbert, An 0–15 water clearance method for quantitative regional myocardial blood flow (rMBF) measurements, J.Nucl.Med., 23:69 (1982).Google Scholar
  52. 51.
    H. H. Coenen, M. -F. Harmand, G. Kloster, and G. Stöcklin, 15-(p-[<sup>75</sup>Br]bromophenyl)pentadecanoic acid: Pharmacokinetics and potential as heart agent, J.Nucl.Med., 22:891 (1981).PubMedGoogle Scholar
  53. 52.
    G. Kloster, C. Müller-Platz, and P. Laufer, 3-(<sup>11</sup>C)-methyl-D-glucose, a potential agent for regional cerebral glucose utilization studies, in: “Nuklearmedizin,” H. A. E. Schmidt, G. Riccabona, eds., F. K. Schattauer Verlag, Stuttgart - New York (1980).Google Scholar
  54. 53.
    A. Höck, C. Freundlieb, K. Vyska, L. E. Feinendegen, G. Kloster, S. H. Qaim, and G. Stöcklin, 30-P-labelled phosphate and 11-C-labelled methyl D-glucose for metabolic studies, in: “Radioaktive Isotope in Klinik und Forschung,” R. Höfer, H. Bergmann, eds., Verlag H. Egermann, Wien (1980)Google Scholar
  55. 54.
    K. Vyska, C. Freundlieb, A. Höck. V. Becker, L. E. Feinendegen, G. Kloster, G. Stöcklin, H. Traupe, and W. D. Heiss, The measurement of glucose transport across the blood brain barrier in man by use of 3<sup>-</sup>(C-11)-methyl-D-glucose, J.Cerebr. Blood Flow Met., Suppl.1, 1:42 (1981).Google Scholar
  56. 55.
    K. Vyska, C. Freundlieb, A. Höck, V. Becker, L. E. Feinendegen, F. J. Schuier, H. U. Thal, G. Kloster, G. Stöcklin, and W. D. Heiss, Simultaneous measurement of local perfusion rate (LPR) and glucose transport rate (LGTR) in brain and heart, with C-11-methylglucose (CMG) and dynamic positron-emission-tomography (dPET), J.Nucl.Med., 23: 13 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • L. E. Feinendegen
    • 1
  1. 1.Institute of MedicineNuclear Research Center Jülich GmbHJülichF.R. Germany

Personalised recommendations