Skip to main content

Proton Decay Theory

  • Chapter

Part of the book series: Progress in Physics ((PMP,volume 9))

Abstract

The SU(5) Georgi-Glashow [1] model provided much of the motivation for ongoing proton decay experiments as well as a theoretical framework for estimating expected rates and branching ratios. In the so-called “minimal” model, one assumes the existence of a “great desert”, i.e. no new particles up to mX, the unification mass scale. This simplistic assumption has an appealing consequence; it leads to rather definite predictions. If those predictions turn out to be wrong, it doesn’t necessarily imply that the concept of grand unification or even that the SU(5) model is invalid. Instead, it would most likely suggest that new physics populates the desert and modifies the predictions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  Google Scholar 

  2. H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

    Article  Google Scholar 

  3. Cf. W. Marciano, in “Field Theory in Elementary Particles”, Jan. 1982, Eds. B. Kursunoglu and A. Perlmutter, ( Plenum, NY ) p. 71.

    Google Scholar 

  4. W. Marciano and A. Sirlin, Phys. Rev. Lett. 46, 163 (1981).

    Article  Google Scholar 

  5. W. Marciano, in Orbis Scientiae, Recent Developments in High Energy Physics“, Jan. 1980, Eds. A. Perlmutter and L. Scott (Plenum, NY) p. 121.

    Google Scholar 

  6. W. Marciano, Phys. Rev. D20, 274 (1979);

    Google Scholar 

  7. A. Sirlin, Phys. Rev. D22, 971 (1980);

    Google Scholar 

  8. W. Marciano and A. Sirlin, Phys. Rev. D22, 2695 (1980).

    Article  Google Scholar 

  9. A. Buras, in Proc. of the Bonn Lepton-Photon Symp. Aug. 1981.

    Google Scholar 

  10. A. Sirlin and W. Marciano, Nucl. Phys. B189, 442 (1981);

    Article  Google Scholar 

  11. C. Llewellyn Smith and J. Wheater, Phys. Lett. 105B, 486 (1981).

    Google Scholar 

  12. W. Marciano and A. Sirlin, In Proc. of the Second Workshop on Grand Unification, Ann Arbor, 1981, Eds. J. Leveille, L. Sulak, and D. Unger (Birkhauser, Boston).

    Google Scholar 

  13. M. Chanowitz, J. Ellis and M.K. Gaillard, Nucl. Phys. B128, 506 (1977).

    Article  Google Scholar 

  14. A. Buras, J. Ellis, M.K. Gaillard and D. Nanopoulos, Nucl. Phys. B135, 66 (1978).

    Article  Google Scholar 

  15. M. Fischler and J. Oliensis, Phys. Lett. 119B, 385 (1982).

    Google Scholar 

  16. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);

    Article  Google Scholar 

  17. F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).

    Article  Google Scholar 

  18. P. Langacker, Phys. Rep. 72, 185 (1981).

    Article  Google Scholar 

  19. B. Cortez describes the Irvine-Michigan-Brookhaven (IMB) experiment in these proceedings.

    Google Scholar 

  20. Y. Tomozawa, Phys. Rev. Lett. 46, 463 (1981).

    Article  Google Scholar 

  21. V. Berezinski, B. Joffe and Ya. Kogan, Phys. Lett. 105B, 33 (1981).

    Google Scholar 

  22. J. Donoghue and E. Golowich, Phys. Rev. D26, 2888 (1982).

    Google Scholar 

  23. W. Luella, Phys. Lett. 1228, 381 (1983).

    Google Scholar 

  24. N. Isgur and M. Wise, Phys. Lett. 117B, 179 (1982).

    Google Scholar 

  25. A. Thomas and B. McKellar, CERN preprint 3376 (1982).

    Google Scholar 

  26. ] Cf. Y. Tosa, G. Branco and R. Marshak, VPI preprint (1983).

    Google Scholar 

  27. M. Fischler and C. Hill, Nucl. Phys. B193, 53 (1981).

    Article  Google Scholar 

  28. C. Dover, M. Goldhaber, T.L. Trueman and L.-L. Chau, Phys. Rev. D24, 2886 (1981)

    Google Scholar 

  29. Cf. L.N. Chang and N.P. Chang, Phys. Lett. 92B, 103 (1980).

    Google Scholar 

  30. G. Feinberg, M. Goldhaber and G. Steigman, Phys. Rev. D18, 1602 (1978);

    Google Scholar 

  31. L. Arnellos and W. Marciano, Phys. Rev. Lett. 48, 1708 (1982).

    Article  Google Scholar 

  32. G. Cook, K. Mahanthappa and M. Sher, Phys. Lett. 91B, 369 (1981).

    Google Scholar 

  33. L. Ibanez, Nucl. Phys. B181, 105 (1981).

    Article  Google Scholar 

  34. W. Marciano and Z. Parsa, unpublished.

    Google Scholar 

  35. E. Golowich, Phys. Rev. D24, 2899 (1981).

    Google Scholar 

  36. C. Dover, private communication.

    Google Scholar 

  37. Cf. P. Fayet and S. Ferrara, Phys. Rep. 32C, 249 (1977).

    Google Scholar 

  38. S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24, 1681 (1981);

    Google Scholar 

  39. S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981);

    Article  Google Scholar 

  40. N. Sakai, Z. Phys. C11, 153 (1981).

    Google Scholar 

  41. L. Ibanez and G. Ross, Phys. Lett. 105B, 439 (1981);

    Google Scholar 

  42. M. Einhorn and D.R.T. Jones, Nucl. Phys. B196, 475 (1982);

    Article  Google Scholar 

  43. W. Marciano and G. Senjanovic, Phys. Rev. D25, 3092 (1982);

    Google Scholar 

  44. L. Ibanez and F. Yndurain, Phys. Lett. 113B, 367 (1982).

    Google Scholar 

  45. U. Berezinsky and A. Smirnov, INR preprint (1982);

    Google Scholar 

  46. Y. Igarashi et al., Phys. Lett. 116B, 349 (1982);

    Google Scholar 

  47. A. Masiero et al., Phys. Lett. 115B, 298 (1982).

    Google Scholar 

  48. S. Weinberg, Phys. Rev. D26, 287 (1982);

    Google Scholar 

  49. N. Sakai and T. Yanagida, Nucl. Phys. B197, 533 (1982).

    Article  Google Scholar 

  50. S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett. 112B, 133 (1982);

    Google Scholar 

  51. J. Ellis, D. Nanopoulos and S. Rudaz, Nucl. Phys. B202, 43, (1982).

    Google Scholar 

  52. M.L. Cherry et al., Phys. Rev. Lett. 23, 1507 (1981).

    Article  Google Scholar 

  53. Cf. L. Ibanez, Phys. Lett. 118B, 73 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marciano, W.J. (1983). Proton Decay Theory. In: Weldon, H.A., Langacker, P., Steinhardt, P.J. (eds) Fourth Workshop on Grand Unification. Progress in Physics, vol 9. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1812-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1812-6_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1814-0

  • Online ISBN: 978-1-4757-1812-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics