Late Evolution of Adiabatic Fluctuations

  • A. S. Szalay
  • J. R. Bond
Part of the Progress in Physics book series (PMP, volume 9)

Abstract

We classify massive stable collisionless relics of the Big Bang into three categories of dark matter: hot, with damping mass about supercluster scale; warm, with damping mass of galactic or cluster scale; and cold, with negligible damping. The first objects that form in universes dominated by hot and warm relics are pancakes. Coupled one-dimensional N-body and Eulerian hydrodynamical simulations follow the nonlinear evolution of pancakes, the separation of baryons from dark matter via shock formation and the evolution of the shocked gas by conduction as well as by cooling. Only ~10−20% of the gas cools sufficiently to fragment on sub-galactic scales in neutrino-dominated hot theories. Cooling is efficient for warm relics. In all cases, the typical fragment size is ~109−1010 MO. Electrons in the hot gas created by the pancake shocks can upscatter photons in the microwave background radiation, causing spectral distortions. Angular differences in these distortions lead to temperature fluctuations which are on the edge of observability, and can be used as a test of the pancake scenario.

Keywords

Dark Matter Spectral Distortion Primordial Black Hole Grand Unification Kompaneets Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V. I., Shandarin, S.F. and Zeldovich, Ya.B. 1982, Geophys. Astrop. Fluid Dynamics 20, Ill.Google Scholar
  2. Binney, J. 1977, Ap.J. 215, 483.CrossRefGoogle Scholar
  3. Bond, J.R.,Efstathiou, G. and Silk, J. 1980, Phys. Rev. Lett. 45, 1980.Google Scholar
  4. Bond, J.R. and Szalay A.S. 1983, Ap.J., in press.Google Scholar
  5. Bond, J.R., Szalay, A.S. and Turner, M.S. 1982, Phys. Rev. Lett. 48, 1636.Google Scholar
  6. Bond, J.R., Centrella, J., Szalay, A.S. and Wilson, J.R. 1983, M.N.R.A.S. to be published.Google Scholar
  7. Bond, J.R., Szalay, A.S. and White, S.D.M. 1983, Nature 301, 584.CrossRefGoogle Scholar
  8. Gelmini, G.B., Nussinov, S. and Roncadelli, M. 1982, preprint MPI-PAE 37182Google Scholar
  9. Georgi, H. and Glashow, S.L. 1974, Phys. Rev. Lett. 32, 438.Google Scholar
  10. Georgi, H., Glashow, S.L. and Nussinov, S. 1981, Nucl. Phys. B 193, 297. Kibble, T.W. 1983, private communication.Google Scholar
  11. Ku, W.H.M. et al. 1982, M.N.R.A.S. 202.Google Scholar
  12. Lee, B.W. and Weinberg, S. 1977, Phys. Rev. Lett. 39, 165.Google Scholar
  13. Olive, K.A., Schramm, D.N., Steigman, G., Turner, M.S. and Yang, J. 1981, Ap.J. 246, 557.CrossRefGoogle Scholar
  14. Partridge, B. 1981, Proc. Int. School on Cosmology, Erice, Italy, p. 121. edited by B.J.T. Jones, Reidel, Dordrecht.Google Scholar
  15. Peebles, P.J.E., 1982, Ap.J. 258, 415.CrossRefGoogle Scholar
  16. Preskill, J., Wise, M.B. and Wilczek, F. 1982. Harvard preprint HUTP-82/A048.Google Scholar
  17. Primack, J. 1983, this volume.Google Scholar
  18. Rees, M.J. and Ostriker, J. 1977, M.N.R.A.S. 179, 541.Google Scholar
  19. Shvartsman, V.F. 1969, Sov.Physics. JETP Lett. 9, 184.Google Scholar
  20. Shapiro, P.R., Struck-Marcell, C. and Melott, A.L. 1983, preprint.Google Scholar
  21. Sherman, R.D. 1982, Ap.J. 256, 370.CrossRefGoogle Scholar
  22. Silk, J. 1977, Ap.J. 211, 638.CrossRefGoogle Scholar
  23. Sunyaev, R.A. and Zeldovich, Ya.B. 1972, Astron. Astrophys. 20, 189.Google Scholar
  24. Zeldovich, Ya.B. 1970, Astron. Astrophys. 5, 84.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • A. S. Szalay
    • 1
  • J. R. Bond
    • 2
    • 3
  1. 1.Department of Atomic PhysicsEotvos UniversityBudapestHungary
  2. 2.Institute of AstronomyCambridgeUK
  3. 3.Institute for Theoretical PhysicsStanford UniversityUSA

Personalised recommendations