Plant Glycosides: Effects on Atherosclerosis Regression in Macaca Fascicularis

  • M. R. Malinow


The regression of atherosclerosis in various animal species has been reviewed by several investigators.1–4 The study of this phenomenon in nonhuman primates stemmed from the observations of Armstrong et al. in rhesus macaques (Macaca mulatta).5 They demonstrated that in advanced coronary atherosclerotic lesions induced by a high-cholesterol diet there is a remarkable decrease in lumen stenosis when the animals are shifted to a low-cholesterol diet. Their observations have been confirmed in the same species by Clarkson et al.,6 Stary,7 Eggen et al.,8 and Wissler,9 and have been extended to cynomolgus macaques (Macaca fascicularis) by others.10–12


Bile Acid Plasma Cholesterol Rhesus Macaque Plasma Cholesterol Level Cynomolgus Macaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Wissler, Current status of regression studies, Atheroscler. Rev.3: 213 (1976).Google Scholar
  2. 2.
    M. R. Malinow, Regression of atherosclerosis in nonhuman primates. An overview, in: “Use of Nonhuman Primates in Cardiovascular Disease,” S. S. Kalter, ed., University of Texas Press, Austin and London (1980).Google Scholar
  3. 3.
    H. C. Stary, Regression of atherosclerosis in primates, Virchows Arch. [Anat. Pathol.] 383: 117 (1979).Google Scholar
  4. 4.
    M. L. Armstrong, Regression of atherosclerosis, Atheroscler. Rev. 1: 137 (1976).Google Scholar
  5. 5.
    M. L. Armstrong, E. D. Warner, and W. E. Connor, Regression of coronary atheromatosis in rhesus monkeys, Circ. Res. 27: 59 (1970).CrossRefGoogle Scholar
  6. 6.
    T. B. Clarkson, M. G. Bond, C. A. Marzetta, and B. C. Bullock, Approaches to the study of atherosclerosis regression in rhesus monkeys: Interpretation of morphometric measurements of coronary arteries, in: “Atherosclerosis V,” A. M. Gotto, Jr., L. C. Smith, and B. Allen, eds., Springer-Verlag, New York (1980).Google Scholar
  7. 7.
    H. C. Stary, The origin in atherosclerotic lesions of extracellular lipids and debris and their elimination during regression, in: “State of Prevention and Therapy in Human Arteriosclerosis and in Animal Models,” Abhandlungen der Rheinisch-Westfälischen Akademie der Wissenschaften, Vol. 63, W. J. Hauss, R. W. Wissler, and R. Lehman, eds., Westdeutscher Verlag, Opladen, West Germany (1978).Google Scholar
  8. 8.
    D. A. Eggen, J. P. Strong, W. P. Newman III, C. Catsulis, G. T. Malcolm, and M. G. Kokatnur, Regression of diet-induced fatty streaks in rhesus monkeys, Lab. Invest. 31: 294 (1974).Google Scholar
  9. 9.
    R. W. Wissler, Recent progress in studies of experimental primate atherosclerosis, Prog. Biochem. Pharmacol. 4: 378 (1968).Google Scholar
  10. 10.
    M. G. Bond, M. R. Adams, and B. C. Bullock, Complicating factors in evaluating coronary artery atherosclerosis, Artery 9: 21 (1981).Google Scholar
  11. 11.
    M. R. Malinow, P. McLaughlin, H. K. Naito, L. A. Lewis, and W. P. McNulty, Effect of alfalfa meal in shrinkage (regression) of atherosclerotic plaques during cholesterol feeding in monkeys, Atherosclerosis 30: 27 (1978).CrossRefGoogle Scholar
  12. 12.
    M. L. Armstrong and M. B. Megan, Arterial fibrous proteins in cynomolgus monkeys after atherogenic and regression diets, Circ. Res. 36: 256 (1975).CrossRefGoogle Scholar
  13. 13.
    M. R. Malinow, P. McLaughlin, L. Papworth, H. K. Naito, L. Lewis, and W. P. McNulty, A model for therapeutic intervention on established coronary atherosclerosis in a nonhuman primate, Adv. Exp. Med. Biol. 67: 3 (1976).Google Scholar
  14. 14.
    M. L. Roonwal and S. M. Mohnot, eds., “Primates of South Asia,” Harvard University Press, Cambridge, Massachusetts, and London, p. 89 (1977).Google Scholar
  15. 15.
    L. C. Fillios and G. V. Mann, The importance of sex in the variability of the cholesterolemic response of rabbits when fed cholesterol, Circ. Res. 4: 406 (1956).CrossRefGoogle Scholar
  16. 16.
    M. R. Malinow, Important considerations for nonhuman primate models of diet-induced atherosclerosis, in: “Primates in Nutritional Research,” K. C. Hayes, ed., Academic Press, New York and London (1979).Google Scholar
  17. 17.
    H. C. Stary and M. R. Malinow, Ultrastructure of experimental coronary artery atherosclerosis in cynomolgus macaques: A comparison with the lesions of other primates, Atherosclerosis 43: 151 (1982).CrossRefGoogle Scholar
  18. 18.
    M. R. Malinow, A. A. Pellegrino, and E. H. Ramos, Chemical and anatomical correlations in cholesterol-fed rabbits, Acta Physiol. Latino Amer. 8: 37 (1958).Google Scholar
  19. 19.
    J. R. A. Mitchell and C. J. Schwartz, eds., “Arterial Disease,” F. A. Davis Co., Philadelphia (1965).Google Scholar
  20. 20.
    N. Anitschkow, Über die Rückbildungsvorgange be der experimentellen Atherosklerose, Verh. Dtsch. Ges. Pathol. 23: 473 (1927).Google Scholar
  21. 21.
    N. Anitschkow, A history of experimentation on arterial atherosclerosis in animals, in: “Cowdry’s Arteriosclerosis: A survey of the Problem,” H. T. Blumenthal, ed., Charles C. Thomas, Springfield, Illinois (1976).Google Scholar
  22. 22.
    M. Friedman and S. O. Byers, Observations concerning the evolution of atherosclerosis in the rabbit after cessation of cholesterol feeding, Am. J. Pathol. 43: 349 (1963).Google Scholar
  23. 23.
    J. T. Prior and D. D. Ziegler, Regression of experimental atherosclerosis, Arch. Pathol. 80: 50 (1965).Google Scholar
  24. 24.
    P. P. Gupta, H. D. Tandon, and V. Ramalingaswami, Experimental atherosclerosis in rabbits with special reference to reversal, J. Pathol. 101: 309 (1970).CrossRefGoogle Scholar
  25. 25.
    P. P. Gupta, H. D. Tandon, and V. Ramalingaswami, Further observations on the reversibility of experimentally induced atherosclerosis in rabbits, J. Pathol. 105: 229 (1971).CrossRefGoogle Scholar
  26. 26.
    D. Vesselinovitch, R. W. Wissler, K. Fischer-Dzoga, R. Hughes, and L. Dubien, Regression of atherosclerosis in rabbits. Part 1. Treatment with low fat diet, hyperoxia and hypolipidemic agents, Atherosclerosis 19: 259 (1974).CrossRefGoogle Scholar
  27. 27.
    M. Bevans, J. D., Davidson, and F. E. Kendall, Regression of lesions in canine arteriosclerosis, Arch. Pathol. 51: 288 (1951).Google Scholar
  28. 28.
    L. Horlick and L. N. Katz, Retrogression of atherosclerotic lesions on cessation of cholesterol feeding in the chick, J. Lab. Clin. Med. 34: 1427 (1949).Google Scholar
  29. 29.
    T. B. Clarkson, J. S. King Jr., H. B. Lofland, M. A. Feldner, and B. C. Bullock, Pathologic characteristics and composition of diet-aggrevated atherosclerotic plaques during “regression,” Exp. Mol. Pathol. 19: 267 (1973).CrossRefGoogle Scholar
  30. 30.
    A. S. Daoud, J. Jarmolych, J. M. Augustyn, K. E. Fritz, J. K. Singh, and K. T. Lee, Regression of advanced atherosclerosis in swine, Arch. Pathol. Lab. Med. 100: 372 (1976).Google Scholar
  31. 31.
    C. A. Maruffo and O. W. Portman, Nutritional control of coronary artery atherosclerosis in the squirrel monkey. J. Atheroscler. Res. 8: 237 (1968),CrossRefGoogle Scholar
  32. 32.
    C. F. Tucker, C. Catsulis, J. P. Strong, and D. A. Eggen, Regression of early cholesterol-induced aortic lesions in rhesus monkeys, Am. J. Pathol. 65: 493 (1971).Google Scholar
  33. 33.
    B. Radhakrishnamurthy, D. A. Eggen, M. Kokatnur, S. Jirge, J. P. Strong, and G. S. Berenson, Composition of connective tissue in aortas from rhesus monkeys during regression of diet induced fatty streaks, Lab. Invest. 33: 136 (1975).Google Scholar
  34. 34.
    J. P. Strong, D. A. Eggen, and H. C. Stary, Reversibility of fatty streaks in rhesus monkeys, Primates Med. 9: 300 (1976).Google Scholar
  35. 35.
    D. Vesselinovitch, R. Hughes, L. Frazier, and R. W. Wissler, Studies of the reversal of advanced atherosclerosis in the rhesus monkey, Am. J. Pathol, 70: 41a (1973) (abstract).Google Scholar
  36. 36.
    R. W. Wissler, D. Vesselinovitch, J. Borensztajn, and R. Hughes, Regression of severe atherosclerosis in cholestyramine-treated rhesus monkeys with or without a low-fat, low-cholesterol diet, Circulation 52(suppl. II): II-16 (1975) (abstract).Google Scholar
  37. 37.
    H. C. Stary and J. P. Strong, The fine structure of nonatherosclerotic intimai thickening, of developing, and of regressing atherosclerotic lesions at the bifurcation of the left coronary artery, Adv. Exp. Med. Biol. 67: 89 (1976).Google Scholar
  38. 38.
    T. B. Clarkson, N. D. M. Lehner, W. D. Wagner, R. W. St. Clair, M. G. Bond, and B. C. Bullock, Study of atherosclerosis regression in Macaca malatta. 1. Design of experiment and lesion induction, Exp. Mol. Pathol. 30: 360 (1979).CrossRefGoogle Scholar
  39. 39.
    T. B. Clarkson, M. G. Bond, B. C. Bullock, and C. A. Marzetta, A study of atherosclerosis regression in Macaca mulatta. 4. Changes in coronary arteries from animals with atherosclerosis induced for 19 months and then regressed for 24 or 48 months at plasma cholesterol concentrations of 300 or 200 mg/dl, Exp. Mol. Pathol. 34: 345 (1981).CrossRefGoogle Scholar
  40. 40.
    R. Pick, J. Stamler, S. Rodbard, and L. N. Katz, Estrogen induced regression of coronary atherosclerosis in cholesterolfed chicks, Circulation 6: 858 (1952).CrossRefGoogle Scholar
  41. 41.
    M. G. Bond, B. C. Bullock, T. B. Clarkson, and N. D. M. Lehner, Effect of plasma cholesterol concentrations on regression of primate atherosclerosis, Am. J. Pathol. 83: A69 (1976)(abstract).Google Scholar
  42. 42.
    W. D. Wagner, R. W. St. Clair, and T. B. Clarkson, Atherosclerosis regression in rhesus monkeys at plasma cholesterol levels achievable in man, Fed. Proc. 35: 293 (1976) (abstract).Google Scholar
  43. 43.
    C. H. Hanson, G. O. Kohler, J. W. Dudley, E. L. Sorenson, G. R. Van Atta, K. W. Taylor, M. W. Pedersen, H. L. Carnahan, C. P. Wiltsie, W. R. Kehr, C. C. Lowe, E. H. Standford, and J. A. Yungen, Saponin content of alfalfa as related to location, cutting, variety and other variables, Crops Research ARS 33–44, United States Department of Agriculture, Agricultural Research Service (1963).Google Scholar
  44. 44.
    P. Griminger and H. Fisher, Dietary saponin and plasma cholesterol in the chicken, Proc. Soc. Exp. Biol. Med. 99: 424 (1958).Google Scholar
  45. 45.
    H. A. I. Newman, F. A. Kummerow, and H. M. Scott, Dietary saponins, a factor which may reduce liver and serum cholesterol levels, Poultry Sci. 37: 42 (1958).CrossRefGoogle Scholar
  46. 46.
    D. G. Oakenfull, D. E. Fenwick, R. L. Hood, D. L. Topping, R. L. Illman, and G. B. Storer, Effects of saponins on bile-acids and plasma lipids in the rat, Br. J. Nutr. 42: 209 (1979).CrossRefGoogle Scholar
  47. 47.
    B. Morgan, M. Heald, S. G. Brooks, J. L. Tee, and J. Green. The interactions between dietary saponin, cholesterol and related sterols in the chick, Poultry Sci. 51: 677 (1972).CrossRefGoogle Scholar
  48. 48.
    D. L. Topping, G. B. Storer, G. B. Calvert, R. J. Illman, D. G. Oakenfull, and R. A. Weiler, Effects of dietary saponins on fecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig, Am. J. Clin. Nutr. 33: 783 (1980).Google Scholar
  49. 49.
    D. L. Topping, R. P. Trimble, R. J. Illman, J. D. Potter, and D. G. Oakenfull, Prevention of dietary hypercholesterolemia in the rat by soy flour high and low in saponins, Nutr. Rep. Int. 22: 513 (1980).Google Scholar
  50. 50.
    D. Kritchevsky, S. A. Tepper, and J. A. Story, Isocaloric, isogravic diets in rats. 3. Effect of nonnutritive fiber (alfalfa or cellulose) on cholesterol metabolism, Nutr. Rep. Int. 9: 301 (1974).Google Scholar
  51. 51.
    M. R. Malinow, Triterpenoid saponins in mammals: Effects on cholesterol metabolism and atherosclerosis, in: “Biochemistry and Function of Isopentenoids in Plants,” W. D. Ness, G. Fuller, and L. S. Tsai, eds., Marcel Dekker, New York (in press).Google Scholar
  52. 52.
    M. R. Malinow, P. McLaughlin, C. Stafford, A. L. Livingston, and J. W. Senner, Effects of alfalfa saponins on regression of atherosclerosis in monkeys, in: “Abhandlungen der Rheinisch-Westfälischen Akademie der Wissenschaften, Second Münster International Arteriosclerosis Symposium, band 70: Clinical Implications of Recent Research Results in Arteriosclerosis,” W. H. Hauss and R. W. Wissler, eds., Westdeutscher Verlag, Opladen, West Germany, pp. 241–254 (1983).CrossRefGoogle Scholar
  53. 53.
    J. O. Anderson, Effect of alfalfa saponin on the performance of chicks and laying hens, Poultry Sci. 36: 873 (1957).CrossRefGoogle Scholar
  54. 54.
    B. W. Heywang and H. R. Bird, The effect of alfalfa saponin on the growth, diet consumption, and efficiency of diet utilization of chicks, Poultry Sci. 33: 239 (1954).CrossRefGoogle Scholar
  55. 55.
    B. W. Heywang, C. R. Thompson, and A. R. Kemmerer, Effect of alfalfa saponin on laying chicks, Poultry Sci. 38: 968 (1958).CrossRefGoogle Scholar
  56. 56.
    I. Ishaaya, Y. Birk, A. Bondi, and Y. Tencer, Soyabean saponins, IX. Studies of their effect on birds, mammals, and cold-blooded organisms, J. Sci. Food Agric. 20: 433 (1969).CrossRefGoogle Scholar
  57. 57.
    G. Reshef, B. Gestetner, Y. Birk, and A. Bondi, Effect of alfalfa saponins on the growth and some aspects of lipid metabolism of mice and quails, J. Sci. Food Agric. 27: 63 (1976).CrossRefGoogle Scholar
  58. 58.
    E. B. Wilcox and L. S. Galloway, Serum and liver cholesterol, total lipids and lipid phosphorus levels of rats under various dietary regimes, Am. J. Clin. Nutr. 9: 236 (1961).Google Scholar
  59. 59.
    M. R. Malinow, W. P. McNulty, P. McLaughlin, C. Stafford, A. K. Burns, A. L. Livingston, and G. O. Kohler, The toxicity of alfalfa saponins in rats, Food Cosmet. Toxicol. 19: 443 (1981).CrossRefGoogle Scholar
  60. 60.
    M. R. Malinow, P. McLaughlin, W. P. McNulty, D.C. Houghton, S. Kessler, P. Stenzel, S. H. Goodnight Jr., E. J. Bardana Jr., and J. L. Palotay, Lack of toxicity of alfalfa saponins in monkeys, J. Med. Primatol. 11: 106 (1982).Google Scholar
  61. 61.
    M. R. Malinow, P. McLaughlin, W. P. McNulty, H. K. Naito, and L. A. Lewis, Treatment of established atherosclerosis during cholesterol feeding in monkeys, Atherosclerosis 31: 185 (1978).CrossRefGoogle Scholar
  62. 62.
    M. R. Malinow, W. E. Connor, P. McLaughlin, C. Stafford, D. S. Lin, A. L. Livingston, G. O. Kohler, and W. P. McNulty, Cholesterol and bile acid balance in Macaca fascicularis: Effects of alfalfa saponins, J. Clin. Invest. 67: 156 (1981).CrossRefGoogle Scholar
  63. 63.
    W. R. Stahl and M. R. Malinow, A survey of physiological measurements in Macaca mulatta, Folia Primatol. 7: 12 (1967).CrossRefGoogle Scholar
  64. 64.
    M. R. Malinow, P. McLaughlin, L. Papworth, C. Stafford, G. O. Kohler, A. L. Livingston, and P. R. Cheeke, Effect of alfalfa saponins on intestinal cholesterol absorption in rats, Am. J. Clin. Nutr. 30: 2061 (1977).Google Scholar
  65. 65.
    B. Gestetner, Y. Assa, Y. Henis, Y. Tencer, M. Rotman, Y. Birk, and A. Bondi, Interactions of lucerne saponins with sterols, Biochim. Biophys. Acta 270: 181 (1972).CrossRefGoogle Scholar
  66. 66.
    M. R. Malinow, P. McLaughlin, and C. Stafford, Prevention of hypercholesterolemia in monkeys (Macaca fascicularis) by digitonin, Am. J. Clin. Nutr. 31: 814 (1978).Google Scholar
  67. 67.
    D. G. Oakenfull and S. Sidhu, A physico-chemical explanation for the effects of dietary saponins on cholesterol and bile salt metabolism, Nutr. Rep. Int. 27: 1253 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • M. R. Malinow
    • 1
  1. 1.Laboratory of Cardiovascular DiseasesOregon Regional Primate Research Center and Oregon Health Sciences UniversityBeavertonUSA

Personalised recommendations