Skip to main content

Regression of Atherosclerosis in Man: Current Data and Their Methodological Limitations

  • Chapter
Regression of Atherosclerotic Lesions

Abstract

The current technology with greatest precision and statistical efficiency for studying the natural course of coronary atherosclerosis is the quantitative analysis of lesion change from serial arteriograms. We have performed serial computer-assisted measurements of virtually all atherosclerotic lesions in 47 patients who were prospectively enrolled and electively recatheterized 18 months after the initial, clinically indicated, arteriogram. There were 629 coronary segments analyzed, representing the entire spectrum of minimal-to-severe atherosclerosis. The frequency distribution of change in the “percent stenosis” parameter was a bell-shaped curve centered at 1.6% (average progression in 18 months), with a standard deviation of ± 8%. Using three standard deviations of the shortterm variability of the method as a criterion for “true” lesion change, we found that 12% of all lesions progressed and 4% regressed (improved by at least 10.2% in percent stenosis). The probability of lesion change is most strongly affected by initial lesion severity and, to a lesser extent, by patient age and by hyperlipidemia. Regression thus occurred about one-third as frequently and was of lesser magnitude than progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Malinow, P. McLaughlin, H. K. Naito, L. A. Lewis, and W. P. McNulty, Effect of alfalfa meal on shrinkage (regression) of atherosclerotic plaques during cholesterol feeding in monkeys, Atherosclerosis 30: 37 (1978).

    Article  Google Scholar 

  2. D. Vesselinovitch, R. W. Wissler, R. Hughes, and J. Borensztajn, Renewal of advanced atherosclerosis in rhesus monkeys, 1: Light microscopic studies, Atherosclerosis 23: 155 (1976).

    Article  Google Scholar 

  3. E. B. Smith, R. S. Slater, Relationship between low-density lipoprotein in aortic intima and serum-lipid levels, Lancet 1: 463 (1972).

    Article  Google Scholar 

  4. M. L. Armstrong, E. D. Warner, and W. E. Conner, Regression of coronary atheromatosis in rhesus monkeys, Circ. Res. 27: 59 (1970).

    Article  Google Scholar 

  5. M. L. Armstrong and M. B. Megan, Lipid depletion in atheromatous coronary arteries in rhesus monkeys after regression diets, Circ. Res. 30: 675 (1972).

    Article  Google Scholar 

  6. M. L. Armstrong and M. B. Megan, Arterial fibrous proteins in cynomolgus monkeys after atherogenic and regression diets, Circ. Res. 36: 256 (1975).

    Article  Google Scholar 

  7. B. G. Brown and D. L. Fry, the fate and fibrogenic potential of subintimal implants oc crystalline lipid in the canine arota: Quantitative histological and autoradiographic studies, Circ. Res. 43: 261 (1978).

    Article  Google Scholar 

  8. H. B. Lofland and T. B. Clarkson, Bi-directional transfer of cholesterol in normal aorta, fatty streaks and atheromatous plaques. Proc. Soc. Exp. Biol. Med. 133: 1 (1970).

    Google Scholar 

  9. R. A. Bruce, F. Kusumi, and D. Hosmer, Maximal oxygen uptake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 85: 546 (1973).

    Article  Google Scholar 

  10. W. B. Kannel, and P. D. Sorlie, Remission of clinical angian pectoris: The Framingham study, Am. J. Cardiol. 42: 119 (1978).

    Article  Google Scholar 

  11. S. Severi, G. Davies, A. Maseri, P. Marzullo, and A. l’Abbate, Long-term prognosis of “varient” angina with medical treatment, Am. J. Cardiol. 46: 226 (1980).

    Article  Google Scholar 

  12. The Persantine-Aspirin Reinfarction study group: Persantine and aspirin in coronary heart disease. Circulation 62: 449 (1980).

    Article  Google Scholar 

  13. The Norwegian Multicentre Study Group: Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N. Engl. J. Med. 304: 801 (1981).

    Article  Google Scholar 

  14. S. H. Taylor, B. Silke, A. Ebbutt, G. C. Sutton, B. J. Prout, and D. M. Burley. A long-term prevention study with Oxprenolol in coronary heart disease, N. Engl. J. Med. 307: 1298 (1982).

    Google Scholar 

  15. L. M. Zir, S. W. Miller, R. E. Dinsmore, J. P. Gilbert, and J. W. Harthorne, Interobserver variability in coronary angiography, Circulation 53: 627 (1976).

    Article  Google Scholar 

  16. K. M. Detre, E. Wright, M. L. Murphy, and T. Takaro, Observer agreement in evaluating coronary angiograms, Circulation 52: 979 (1975).

    Article  Google Scholar 

  17. R. A. Derouen, J. A. Murray, and W. Owen, Variability in the analysis of coronary arteriograms, Circulation 55: 324 (1977).

    Article  Google Scholar 

  18. D. Koh, S. Mitten, D. Stewart, E. Bolson, and H. T. Dodge, Comparison between computerized quantitative coronary angiography and clinical interpretation. Circulation 60 (Suppl II): 11 (1979).

    Google Scholar 

  19. D. P. Scoblionko, B. G. Brown, S. Mitten, J. H. Caldwell, J. W. Kennedy, E. L. Bolson, and H. T. Dodge, A new digital electronic calipier for measurement of cornary arterial stenosis: Comparison with visual estimates and computer-assisted measurements, Am. J. Cardiol., in press.

    Google Scholar 

  20. M. M. McMahon, B. G. Brown, R. Cukingnan, et al.: Quantitative coronary angiography: Measurement of the “critical” stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation 60: 106 (1979).

    Article  Google Scholar 

  21. G. G. Gensini, A. E. Kelly, B. C. B. DaCosta, and P. P. Huntington, Quantitative angiography: The measurement of coronary vasomobility in the intact animal and man, Chest 60: 522 (1971).

    Article  Google Scholar 

  22. R. N. MacAlphin, A. S. Abbasi, J. R. Grollman Jr., and L. Eber, Human coronary artery size during life, Radiology 108: 567 (1973).

    Google Scholar 

  23. D. H. Blankenhorn, S. W. Brooks, R. H. Selzer, D. W. Crawford, and H. P. Chin, Assessment of atherosclerosis from angiographic images, Proc. Soc. Exp. Biol. Med. 145: 1298 (1974).

    Google Scholar 

  24. W. Rafflebeul, R. Helm, M. Dzulba, B. Henkel, and P. Lichtien, Morphometric analysis of coronary arteries, in “Coronary angiography and angina pectoris,” P. R. Lichtein,, ed., George Theime Veriag, Stuttgart (1976).

    Google Scholar 

  25. B. G. Brown, E. Bolson, M. Frimer, and H.T. Dodge, Quantitative coronary arteriography: Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation, Circulation 55: 329 (1977).

    Article  Google Scholar 

  26. R. L. Feldman, C. J. Pepine, R. C. Curry, and C. R. Conti, Quantiative coronary arteriography using 105 mm photospot angiography and an optical magnifying device, Cathet. Cardiovasc. Diagn. 5: 195 (1979).

    Article  Google Scholar 

  27. T. Sandor, A. B. Als, and S. Paulin, Cine-densitometric measurement of coronary arterial stenoses. Cathet. Cardiovasc. Diagn. 5: 229 (1979).

    Article  Google Scholar 

  28. E. L. Alderman, L. E. Berte, D. C. Harrison, and W. Sanders, Quantitation of coronary artery dimensions using digital image processings, SPIE-Digital Radiography 314: 273 (1981).

    Article  Google Scholar 

  29. J. H. C. Reiber, J. J. Gerbrands, C. J. Kooyman, J. C. H. Scheurbiers, C. J. Slager, A. Den Boer, and P. W. Serruys, Quantitative coronary angiography with automated contour detection and desnitometry; technical aspect, in “Angiocardiography, Current Status and Future Developments,” H. Just & P. H. Heintzen, eds., Springer-Verlag, Heidelberg (1983), in press.

    Google Scholar 

  30. G. G. Gensini, P. Esente, and A. Kelly, Natural history of coronary disease in patients with and without coronary bypass graft surgery, Circulation 50 (Suppl II): 11–98 (1974).

    Google Scholar 

  31. C. E. Bemis, R. Gorlin, H. G. Kemp, M. V. Herman, Progression of coronary artery disease. A clinical arteriographic study, Circulation 47: 455 (1973).

    Article  Google Scholar 

  32. D. Kimbiris, P. Lavine, H. Van Den Broek, M. Najmi, and W. Likoff, Devolutionary pattern of coronary atherosclerosis in patients with angina pectoris, Am J Cardiol 33: 7 (1974).

    Article  Google Scholar 

  33. D. T. Nash, N. Caldwell, and D. Ancona, Accelerated coronary artery disease arteriographically proved. Analysis of risk factors, NY State J. Med. 74: 947 (1974).

    Google Scholar 

  34. J. Rosch, R. Antonovic, R. S. Trenouth, S. H. Rahimtolla, D. N. Sim, and C. T. Dotter, The natural history of coronary artery stenosis, Radiology 119: 513 (1976).

    Google Scholar 

  35. J. R. Kramer, Y. Matsuda, J. C. Mulligan, M. Aronow, and W. L. Proudfit, Progression of Coronary Atherosclerosis, Circulation 63: 519 (1981).

    Article  Google Scholar 

  36. A. V. G. Bruschke, T. S. Wijers, W. Klosters, and J. Landmann, The anatomic evolution of coronary artery disease demonstrated by coronary arteriography in 256 non-operated patients, Circulation 63: 527 (1981).

    Article  Google Scholar 

  37. A. S. Chilvers, M. Chir, M. L. Thomas, and N. L. Browse, The progression of arteriosclerosis. A radiological study, Circulation 50: 402 (1981).

    Article  Google Scholar 

  38. P. T. Kup, K. Hayase, J. B. Kostis, and A. E. Moreyra, Use of combined diet and colestipol in long-term (7–7.5 years) treatment of patients with type II hyperlipoproteinemia, Circulation 59: 199 (1979).

    Article  Google Scholar 

  39. W. Rafflebeul, L. R. Smith, W. L. Rogers, J. A. Mantle, C. E. Rackley, and R. O. Russell Jr., Quantitative coronary arteriography. Coronary anatomy of patients with unstable angina pectoris re-examined one year after optimal medical therapy, Am. J. Cardiol. 43: 699 (1979).

    Article  Google Scholar 

  40. K. L. Gould, K. O. Kelley, and E. L. Bolson, Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis, Circulation 66: 930 (1982).

    Article  Google Scholar 

  41. D. W. Crawford, S. H. Brooks, R. H. Selzer, R. Barndt Jr., E. S. Beckenbach, and D. H. Blankenhorn, Computer densitometry for angiographic assessment of arterial cholesterol content and gross pathology in human atherosclerosis, J. Lab. Clin. Med. 89: 378 (1977).

    Google Scholar 

  42. B. G. Brown, C. D. Pierce, R. B. Petersen, E. L. Bolson, and H. T. Dodge, A new approach to clinical investigation of progressive coronary atherosclerosis, Circulation 60 (Suppl II): 11 (1979).

    Google Scholar 

  43. R. Barndt Jr., D. H. Blankenhorn, D. W. Crawford, and S. H. Brooks, Regression and progression of early femoral atherosclerosis in treated hyperlipoproteinemic patients, Ann. Int. Med. 86: 139 (1977).

    Article  Google Scholar 

  44. D. H. Blankenhorn, S. H. Brooks, R. H. Selzer, and R. J. Barndt, The rate of atherosclerosis change during treatment of hyperlipoproteinemia, Circulation 57: 355 (1978).

    Article  Google Scholar 

  45. D. S. Fredrickson, R. I. Levy, and R. S. Lees, Fat transport in lipoproteins — an integrated approach to mechanisms and disorders, N. Eng. J. Med. 276: 32 (1967).

    Google Scholar 

  46. C. A. Mistretta and A. B. Crummy, Diagnosis of cardiovascular disease by digital subtraction angiography, Science 211: 761 (1981).

    Article  Google Scholar 

  47. J. Tobis, O. Nalcioglu, A. Seibert, B. Bauer, L. Iseri, D. Benvenuti, and W. L. Henry, Coronary angiography performed with real-time digital subtraction, Circulation 66 (Suppl II): 11 (1982).

    Google Scholar 

  48. G. O. Roedener, Y. E. Langlois, A. W. Chan, J. Primozich, R. J. Lawrence, P. M. Chikos, and D. E. Strandness Jr., Ultrasonic duplex scanning of extracranial carotid arteries: Improved accuracy using new features from the common carotid artery, J. Cardiovasc Ultrasonography 1: 373 (1982).

    Google Scholar 

  49. Y. Langlois, G. O. Roederer, A. Chen, D. J. Phillips, K. W. Beach, D. Martin, P. M. Chikos, and D. E. Strandness Jr., Evaluating carotid artery disease: The concordence between pulsed Doppler/spectrum analysis and angiography, Ultrasound in Med. and Biol. 9: 51 (1983).

    Article  Google Scholar 

  50. L. Kaufman, L. Crooke, P. Sheldon, H. Hricac, R. Herfkens, and W. Bank. The potential impact of nuclear magnetic resonance imaging on cardiovascular diagnosis, Circulation 67: 251 (1983).

    Article  Google Scholar 

  51. B. G. Brown, E. L. Bolson, and H. T. Dodge, Arteriographic assessment of coronary atherosclerosis, Arteriosclerosis 2: 2 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, B.G., Bolson, E.L., Pierce, C.D., Peterson, R.B., Dodge, H.T. (1984). Regression of Atherosclerosis in Man: Current Data and Their Methodological Limitations. In: Malinow, M.R., Blaton, V.H. (eds) Regression of Atherosclerotic Lesions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1773-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1773-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1775-4

  • Online ISBN: 978-1-4757-1773-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics