Skip to main content

Studies on Arterial Interstitial Fluid

  • Chapter
Regression of Atherosclerotic Lesions
  • 38 Accesses

Abstract

Change in the environment of arterial smooth muscle cells, and particularly in the concentration of low-density lipoprotein (LDL), is assumed to be a major factor in atherogenesis, and to be mediated through changes in the permeability of the arterial endothelium. The immediate nutrient environment of the cells in most tissues is provided by the interstitial fluid, and there is evidence that the composition of the interstitial fluid, at least in limbs, is similar to the composition of lymph obtained from the same anatomical area.1 Analyses of plasma protein concentrations in lymph from several organs and tissues have now been published, and although there is some variation in overall protein concentration, all show an inverse relationship between concentration, expressed as percentage of plasma concentration, and relative molecular mass (Mr) or molecular diameter.1–5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Rutili and K.-E. Arfors, Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue, Acta Physiol. Scand. 99: 1 (1977).

    Article  Google Scholar 

  2. J. E. French, Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium, Int. Rev. Exp. Path. 5: 253 (1966).

    Google Scholar 

  3. J. E. French, The structure and function of the blood vessel wall, in “Vascular Factors and Thrombosis,” F. Koller et al., eds., Schattauer Verlag, Stuttgart and New York, p. 1 (1970).

    Google Scholar 

  4. J. M. Yoffey and F. C. Courtice, “Lymphatics, Lymph and the Lymphomyeloid Complex,” Academic Press, London and New York (1970).

    Google Scholar 

  5. D. Reichl, D. N. Rudra, and N. B. Myant, Further evidence for the role of high density lipoprotein in the removal of tissue cholesterol in vivo, Atherosclerosis 44: 73 (1982).

    Article  Google Scholar 

  6. E. B. Smith and D. C. Crothers, Interaction between plasma proteins and the intercellular matrix in human aortic intima. Protides of the Biological Fluids 22: 315 (1975).

    Google Scholar 

  7. E. B. Smith and E. M. Staples, Distribution of the plasma proteins across the human aortic wall. Barrier functions of endothelium and internal elastic lamina, Atherosclerosis 37: 579 (1980).

    Article  Google Scholar 

  8. H. F. Hoff, J. W. Gaubatz, and A. M. Gotto, Apo B concentration in interstitial fluid from human aortas, Biochem. Biophys. Res. Commun. 85: 1424 (1978).

    Article  Google Scholar 

  9. E. B. Smith and E. M. Staples, Plasma protein concentrations in interstitial fluid from human aortas, Proc. R. Soc. Lond. B. 217: 59 (1982).

    Article  Google Scholar 

  10. E. B. Smith and C. Ashall, Low density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions: relation to theories of endothelial damage and lipoprotein binding, Biochim. Biophys. Acta 754: 249 (1983).

    Article  Google Scholar 

  11. R. Virchow, “Gesammelte Abhandlungen zur Wissenschaftlichen Medicin” Meidinger, Frankfurt AM (1856).

    Google Scholar 

  12. E. B. Smith, Identification of the gelatinous lesion, in “Atherosclerosis VI,” G. Schettler et al., eds., Springer-Verlag, Berlin (1983).

    Google Scholar 

  13. M. D. Haust, The morphogenesis and fate of potential and early atherosclerotic lesions in man, Human Path. 2: 1 (1971).

    Article  Google Scholar 

  14. E. B. Smith and R. H. Smith, Early changes in aortic intima, Atheroscler. Rev. 1: 119 (1976).

    Google Scholar 

  15. M. Burstein, H. R. Scholnick, and R. Morphin, Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions, J. Lipid Res. 11: 583 (1970).

    Google Scholar 

  16. M. Bihari-Varga and M. Végh, Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins, Biochim. Biophys. Acta 144: 202 (1967).

    Article  Google Scholar 

  17. P.-H. Iverius, The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans, J. Biol. Chem. 247: 2607 (1972).

    Google Scholar 

  18. S. R. Srinivasan, B. Radhakrishnamurthy, and G. S. Berenson, Effect of various divalent cations on the quantitation of serum lipoproteins by precipitation with heparin, in: “Report of the HDL Methodology Workshop,” K. Lippel, ed., NIH Publications, Vol. 79–1661: 70 (1979).

    Google Scholar 

  19. S. R. Srinivasan, B. Radhakrishnamurthy, E. R. Dalferes, and G. S. Berenson, Collagenase-solubilized lipoprotein-glycosaminoglycan complexes of human aortic fibrous plaque lesions, Atherosclerosis 34: 105 (1979).

    Article  Google Scholar 

  20. H. F. Hoff, C. L. Heideman, A. M. Gotto, and J. W. Gaubatz, Apoprotein B retention in the grossly normal and atherosclerotic human aorta, Circulation Res. 41: 684 (1977).

    Article  Google Scholar 

  21. R. A. Fisher, “Statistical Methods for Research Workers,” 9th ed., Oliver &Boyd, Edinburgh (1944).

    Google Scholar 

  22. O. W. Portman, Arterial composition and metabolism: esterified fatty acids and cholesterol, Adv. Lipid Res. 8: 41 (1970).

    Google Scholar 

  23. E. B. Smith, P. H. Evans, and M. D. Downham, Lipid in the aortic intima: the correlation of morphological and chemical characteristics, J. Atheroscler. Res. 7: 171 (1967).

    Article  Google Scholar 

  24. J. L. Goldstein, R. G. W. Anderson, L. M. Buja, S. K. Basu, and M. S. Brown, Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro, J. Clin. Invest. 59: 1196 (1977).

    Article  Google Scholar 

  25. M. S. Brown and J. L. Goldstein, Lipoprotein metabolism in the macrophage, Annu. Rev. Biochem. 52: 223 (1983).

    Article  Google Scholar 

  26. A. M. Fogelman, I. Schecter, J. Seager, M. Hokom, J. S. Child, and P. A. Edwards, Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte macrophages, Proc. Nat. Acad. Sci. (USA) 77: 2214 (1980).

    Article  Google Scholar 

  27. T. Henriksen, E. M. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells—recognition by receptors for acetylated low density lipoproteins, Proc. Nat. Acad. Sci. (USA) 78: 6499 (1981).

    Article  Google Scholar 

  28. J. L. Goldstein, H. F. Hoff, Y. K. Ho, S. K. Basu, and M. S. Brown, Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas and complexes of albumin/cholesteryl esters, Arteriosclerosis 1: 210 (1981).

    Article  Google Scholar 

  29. H. F. Hoff and J. W. Gaubatz, Isolation, purification and characterization of a lipoprotein containing apo B from the human aorta, Atherosclerosis 42: 273 (1982).

    Article  Google Scholar 

  30. E. B. Smith and C. Ashall, Variability of the electrophoretic mobility of low density lipoprotein: comparison of interstitial fluid from human aortic intima and serum, Atherosclerosis 49: 89 (1983).

    Article  Google Scholar 

  31. E. B. Smith, Endothelium and lipoprotein permeability, in: “Biology and Pathology of the Vessel Wall,” N. Woolf, ed., Praeger, Eastbourne, p 279 (1983).

    Google Scholar 

  32. G. Thorgeirsson and A. L. Robertson, The vascular endothelium-pathobiologic significance, Am. J. Path. 93: 803 (1978).

    Google Scholar 

  33. G. V. R. Born and M. A. Kratzer, Endogenous agents in platelet thrombosis, in: “Factors in Formation and Regression of the Atherosclerotic Plaque,” G. V. R. Born, et al, eds., NATO Advanced Study Institutes Series A, Plenum Press, New York, Vol. 51, p. 197 (1982).

    Chapter  Google Scholar 

  34. E. B. Smith and E. M. Staples, Haemostatic factors in human aortic intima, Lancet i: 1171 (1981).

    Article  Google Scholar 

  35. S. Weinbaum and C. G. Caro, A macromolecule transport model for the arterial wall based on the ultrastructural specialization observed in electron microscopic studies, J. Fluid Mech. 74: 611 (1976).

    Article  Google Scholar 

  36. R. G. Harrison and T. A. Massaro, Extracellular space of swine aorta measured with [14C] inulin and [14C] sucrose, Am. J. Physiol. 231: 1806 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, E.B. (1984). Studies on Arterial Interstitial Fluid. In: Malinow, M.R., Blaton, V.H. (eds) Regression of Atherosclerotic Lesions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1773-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1773-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1775-4

  • Online ISBN: 978-1-4757-1773-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics