Studies on Arterial Interstitial Fluid

  • Elspeth B. Smith


Change in the environment of arterial smooth muscle cells, and particularly in the concentration of low-density lipoprotein (LDL), is assumed to be a major factor in atherogenesis, and to be mediated through changes in the permeability of the arterial endothelium. The immediate nutrient environment of the cells in most tissues is provided by the interstitial fluid, and there is evidence that the composition of the interstitial fluid, at least in limbs, is similar to the composition of lymph obtained from the same anatomical area.1 Analyses of plasma protein concentrations in lymph from several organs and tissues have now been published, and although there is some variation in overall protein concentration, all show an inverse relationship between concentration, expressed as percentage of plasma concentration, and relative molecular mass (Mr) or molecular diameter.1–5


Atherosclerotic Lesion Interstitial Fluid Cholesterol Ester Arterial Smooth Muscle Cell Human Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Rutili and K.-E. Arfors, Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue, Acta Physiol. Scand. 99: 1 (1977).CrossRefGoogle Scholar
  2. 2.
    J. E. French, Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium, Int. Rev. Exp. Path. 5: 253 (1966).Google Scholar
  3. 3.
    J. E. French, The structure and function of the blood vessel wall, in “Vascular Factors and Thrombosis,” F. Koller et al., eds., Schattauer Verlag, Stuttgart and New York, p. 1 (1970).Google Scholar
  4. 4.
    J. M. Yoffey and F. C. Courtice, “Lymphatics, Lymph and the Lymphomyeloid Complex,” Academic Press, London and New York (1970).Google Scholar
  5. 5.
    D. Reichl, D. N. Rudra, and N. B. Myant, Further evidence for the role of high density lipoprotein in the removal of tissue cholesterol in vivo, Atherosclerosis 44: 73 (1982).CrossRefGoogle Scholar
  6. 6.
    E. B. Smith and D. C. Crothers, Interaction between plasma proteins and the intercellular matrix in human aortic intima. Protides of the Biological Fluids 22: 315 (1975).Google Scholar
  7. 7.
    E. B. Smith and E. M. Staples, Distribution of the plasma proteins across the human aortic wall. Barrier functions of endothelium and internal elastic lamina, Atherosclerosis 37: 579 (1980).CrossRefGoogle Scholar
  8. 8.
    H. F. Hoff, J. W. Gaubatz, and A. M. Gotto, Apo B concentration in interstitial fluid from human aortas, Biochem. Biophys. Res. Commun. 85: 1424 (1978).CrossRefGoogle Scholar
  9. 9.
    E. B. Smith and E. M. Staples, Plasma protein concentrations in interstitial fluid from human aortas, Proc. R. Soc. Lond. B. 217: 59 (1982).CrossRefGoogle Scholar
  10. 10.
    E. B. Smith and C. Ashall, Low density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions: relation to theories of endothelial damage and lipoprotein binding, Biochim. Biophys. Acta 754: 249 (1983).CrossRefGoogle Scholar
  11. 11.
    R. Virchow, “Gesammelte Abhandlungen zur Wissenschaftlichen Medicin” Meidinger, Frankfurt AM (1856).Google Scholar
  12. 12.
    E. B. Smith, Identification of the gelatinous lesion, in “Atherosclerosis VI,” G. Schettler et al., eds., Springer-Verlag, Berlin (1983).Google Scholar
  13. 13.
    M. D. Haust, The morphogenesis and fate of potential and early atherosclerotic lesions in man, Human Path. 2: 1 (1971).CrossRefGoogle Scholar
  14. 14.
    E. B. Smith and R. H. Smith, Early changes in aortic intima, Atheroscler. Rev. 1: 119 (1976).Google Scholar
  15. 15.
    M. Burstein, H. R. Scholnick, and R. Morphin, Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions, J. Lipid Res. 11: 583 (1970).Google Scholar
  16. 16.
    M. Bihari-Varga and M. Végh, Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins, Biochim. Biophys. Acta 144: 202 (1967).CrossRefGoogle Scholar
  17. 17.
    P.-H. Iverius, The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans, J. Biol. Chem. 247: 2607 (1972).Google Scholar
  18. 18.
    S. R. Srinivasan, B. Radhakrishnamurthy, and G. S. Berenson, Effect of various divalent cations on the quantitation of serum lipoproteins by precipitation with heparin, in: “Report of the HDL Methodology Workshop,” K. Lippel, ed., NIH Publications, Vol. 79–1661: 70 (1979).Google Scholar
  19. 19.
    S. R. Srinivasan, B. Radhakrishnamurthy, E. R. Dalferes, and G. S. Berenson, Collagenase-solubilized lipoprotein-glycosaminoglycan complexes of human aortic fibrous plaque lesions, Atherosclerosis 34: 105 (1979).CrossRefGoogle Scholar
  20. 20.
    H. F. Hoff, C. L. Heideman, A. M. Gotto, and J. W. Gaubatz, Apoprotein B retention in the grossly normal and atherosclerotic human aorta, Circulation Res. 41: 684 (1977).CrossRefGoogle Scholar
  21. 21.
    R. A. Fisher, “Statistical Methods for Research Workers,” 9th ed., Oliver &Boyd, Edinburgh (1944).Google Scholar
  22. 22.
    O. W. Portman, Arterial composition and metabolism: esterified fatty acids and cholesterol, Adv. Lipid Res. 8: 41 (1970).Google Scholar
  23. 23.
    E. B. Smith, P. H. Evans, and M. D. Downham, Lipid in the aortic intima: the correlation of morphological and chemical characteristics, J. Atheroscler. Res. 7: 171 (1967).CrossRefGoogle Scholar
  24. 24.
    J. L. Goldstein, R. G. W. Anderson, L. M. Buja, S. K. Basu, and M. S. Brown, Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro, J. Clin. Invest. 59: 1196 (1977).CrossRefGoogle Scholar
  25. 25.
    M. S. Brown and J. L. Goldstein, Lipoprotein metabolism in the macrophage, Annu. Rev. Biochem. 52: 223 (1983).CrossRefGoogle Scholar
  26. 26.
    A. M. Fogelman, I. Schecter, J. Seager, M. Hokom, J. S. Child, and P. A. Edwards, Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte macrophages, Proc. Nat. Acad. Sci. (USA) 77: 2214 (1980).CrossRefGoogle Scholar
  27. 27.
    T. Henriksen, E. M. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells—recognition by receptors for acetylated low density lipoproteins, Proc. Nat. Acad. Sci. (USA) 78: 6499 (1981).CrossRefGoogle Scholar
  28. 28.
    J. L. Goldstein, H. F. Hoff, Y. K. Ho, S. K. Basu, and M. S. Brown, Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas and complexes of albumin/cholesteryl esters, Arteriosclerosis 1: 210 (1981).CrossRefGoogle Scholar
  29. 29.
    H. F. Hoff and J. W. Gaubatz, Isolation, purification and characterization of a lipoprotein containing apo B from the human aorta, Atherosclerosis 42: 273 (1982).CrossRefGoogle Scholar
  30. 30.
    E. B. Smith and C. Ashall, Variability of the electrophoretic mobility of low density lipoprotein: comparison of interstitial fluid from human aortic intima and serum, Atherosclerosis 49: 89 (1983).CrossRefGoogle Scholar
  31. 31.
    E. B. Smith, Endothelium and lipoprotein permeability, in: “Biology and Pathology of the Vessel Wall,” N. Woolf, ed., Praeger, Eastbourne, p 279 (1983).Google Scholar
  32. 32.
    G. Thorgeirsson and A. L. Robertson, The vascular endothelium-pathobiologic significance, Am. J. Path. 93: 803 (1978).Google Scholar
  33. 33.
    G. V. R. Born and M. A. Kratzer, Endogenous agents in platelet thrombosis, in: “Factors in Formation and Regression of the Atherosclerotic Plaque,” G. V. R. Born, et al, eds., NATO Advanced Study Institutes Series A, Plenum Press, New York, Vol. 51, p. 197 (1982).CrossRefGoogle Scholar
  34. 34.
    E. B. Smith and E. M. Staples, Haemostatic factors in human aortic intima, Lancet i: 1171 (1981).CrossRefGoogle Scholar
  35. 35.
    S. Weinbaum and C. G. Caro, A macromolecule transport model for the arterial wall based on the ultrastructural specialization observed in electron microscopic studies, J. Fluid Mech. 74: 611 (1976).CrossRefGoogle Scholar
  36. 36.
    R. G. Harrison and T. A. Massaro, Extracellular space of swine aorta measured with [14C] inulin and [14C] sucrose, Am. J. Physiol. 231: 1806 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Elspeth B. Smith
    • 1
  1. 1.Department of Chemical PathologyUniversity of AberdeenForesterhill, AberdeenScotland, UK

Personalised recommendations