Annealing Behavior and Strengthening of Ti-6a1-2sn

  • M. Majdic
  • G. Welsch
  • G. Zeigler


The microstructure of a fine globular Ti-6A1-6V-2Sn alloy was investigated after various solution treatments (700 to 1000°C) and after aging treatments in the temperature region from 350 to 600°C by X-ray diffraction and by electron microscopy. For two selected solution treatments at 700 and 850°C the mechanical properties in tension were determined as a function of aging temperature and time. Correlation of the microstructure with the mechanical properties yielded the following results: age hardening is caused by precipitation processes in the ß or martensite phase and by hardening of the primary a by Ti3A1 precipitation and possibly oxygen order. After solution treatment at 850°C hardening of the (ß + martensite)-areas are predominant. After solution treatment at lower temperatures (e.g. 700°C) hardening of both phases is of importance.


Aging Time Solution Treatment Aging Temperature Martensite Phase Solution Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Hickey, C.F., Jr., Effect of Microstructure and Cooling Rate on the Mechanical Properties of Ti-6A1–6V–2Sn, Journal of Materials, 1, 1966, p. 89–103.Google Scholar
  2. (2).
    Quemper, F., Beauvais, C., Hocheid, B., Roux, C., Etude Qualitative et Quantitative de la Phase ß du Ti-A6V6E2 A Differentes Temperatures, Thèse ingénieur, CNAM, Paris, 1970, p. 143–160.Google Scholar
  3. (3).
    Hocheid, B., Fontalirand, C., Beauvais, C., Isothermal Transformations of Ti6A16V2Sn Alloy after Preheating in the (a+ß) Range, Titanium, Science and Technology, Proceedings of 2nd Intl. Conf., Cambridge, Mass. 1972, p. 1609–1619.Google Scholar
  4. (4).
    Gueret, G., Houssin, B., Fries, J., Cizeron, G., Lacombe, P., Cinétique de Durcissement de L’Alliage de Titane TA6V6E2. Analyse de L’Évolution Structurale au Cours du Revenu, Journal Less Common Metals 38, 1974, p. 31–51.CrossRefGoogle Scholar
  5. (5).
    Hickey, C.F., Jr., Fopiano, P.J., Heat Treatment Effects on the Mechanical Properties in Ti-6A16V–2Sn, Journal of Testing and Evaluation JTEVA, 1, 1973, p. 166–169.CrossRefGoogle Scholar
  6. (6).
    Castro, R., Séraphin, L., Contribution à l’étude métallographique et structurale de l’alliage de titane TA6V, Mém. scientifiques rév. met. 63, 1966, p. 1025–1056.Google Scholar
  7. (7).
    Namboodhiri,T.K.G., McMahon, C.J., Jr., Herman, H., Decomposition of the a-Phase in Titanium-Rich Ti-Al Alloys. Metall. Trans., 4, 1973, p. 1323–1331.CrossRefGoogle Scholar
  8. (8).
    Crossley, F.A., Effects of the Ternary Additions: 0, Sn, Zr, Cb, Mo and V on the a /a+ Ti3A1 Boundary of Ti-Al Base Alloys, Met. Soc. AIME, 245, 1969, p. 1963–1968.Google Scholar
  9. (9).
    Welsch, G., Lütjering, G., Gazioglu, K., Bunk, W., Deformation Characteristics of Age Hardened TiA16V4, Metall. Trans. 1976 to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • M. Majdic
    • 1
  • G. Welsch
    • 1
  • G. Zeigler
    • 1
  1. 1.Deutsche Forschungs-und Versuchsanstalt fürLuft-und RaumfahrtDeutschland

Personalised recommendations