Decomposition of the Martensite in Two-Phase Titanium Alloys

  • T. L. Trenogina
  • R. M. Lerinman


The present work is devoted to an electron microscope study of the decomposition of hexagonal martensite in α+ß titanium alloys. As previous investigations have shown, martensite decomposition in titanium alloys is heterogeneous in character.(1,2) In this connection it is of interest to study the martensite substructure and its effect on the decomposition kinetics, dispersity and distribution density of precipitating phases.


Titanium Alloy Twin Boundary Habit Plane Tensile Ductility Martensite Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poljak, E. V. and Sokolova, A. Yu., Structural transformations in two-phase titanium alloys, Sb. “Novij konstrukcionnij material titan,” “Nauka,” M., 1972, p. 66.Google Scholar
  2. 2.
    Williams, J. C. Critical Review. Kinetics and phase transformations, “Titanium Science and Technology,” Plenum, New York, 1973, 3, 1433.Google Scholar
  3. 3.
    Kelly, A. and Groves, G. W., Crystallography and crystal defects. Longman, London, 1970.Google Scholar
  4. 4.
    Murzayeva, G. V. and Lerinman, R. M., Electron microscopic investigation of metastable 13-phase decomposition in titanium alloy TS6. “Fiz. metal. metalloved.,” 1970, 28, 813.Google Scholar
  5. 5.
    Wechsler, M. S. and Otte, H. M., The generalized theory of the martensitic cubic to orthorombic phase transformation. “Acta Met.,” 1961, 9, 117.CrossRefGoogle Scholar
  6. 6.
    Urusovskaja, A. A., Formation of regions with disoriented lattice at deformation of mono-and polycrystals. “Sb. Nekotorie voprosi fiziki plastichnosti kristallov,” Izd. AN SSSR, 1960, 75.Google Scholar
  7. 7.
    Mackenzie, J. K. and Bowles, J. S., The crystallography of martensite transformations-IV. Body centered cubic to orthorhombic transformations. “Acta Met.,” 1957, 5, 137.CrossRefGoogle Scholar
  8. 8.
    Nath, B. and Lorimer, G. W., The effect of thermomechanical history of the structure and properties of a Ti-6A1–4V alloy. Proceedings of the Third International Conference on the Strength of Metals and Alloys., Cambridge, England, 1973, 1, 123.Google Scholar
  9. 10.
    Trenoghina, T. L., Yelkina, O. A., Lerinman, R. M., Zvereva, Z. V., Beloborodova, A. T. and Makhnev, E. S., Electron microscope study of effect of thermomechanical conditions of deformation on the structure two-phase a+ß-titanium alloys. “Fiz. metal. metalloved.,” 1975, 40, 1227.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • T. L. Trenogina
    • 1
  • R. M. Lerinman
    • 1
  1. 1.Institute of Metal Physics, the Urals Scientific CentreUSSR Academy of SciencesUSSR

Personalised recommendations