Biomechanics pp 174-195 | Cite as

Bio-viscoelastic Fluids

  • Y. C. Fung


Most biofluids are viscoelastic. Our saliva, for example, behaves more like an elastic body than like water. Mucus, sputum, and synovial fluids are well known for their elastic behavior. Viscoelasticity is an important property of mucus. In the respiratory tract mucus is moved by cilia lining the walls of the trachea and bronchi. If the mucus were a Newtonian fluid, the ciliary motion will be less effective in moving it. Similar ciliary motion is responsible for the movement of the ovum from ovary to uterus through the fallopian tube.


Hyaluronic Acid Synovial Fluid Storage Modulus Cervical Mucus Creep Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, E. A. (1968) Univ. Michigan Med. Center J, Special Issue, 34, 225.Google Scholar
  2. Balazs, E. A., (1966) Fed. Peoc 25, 1817–1822.Google Scholar
  3. Balazs, E. A., and Gibbs, D. A. (1970) In Chemistry and Molecular Biology of the Intercellular Matrix, (Balazs, E. A.) (ed.). Academic Press, New York, Vol. 3, pp. 1241–1253. For details see Gibbs et al (1968) Biopolymers, 6, 777–791.Google Scholar
  4. Clift, A. F., Glover, F. A. and Scott Blair, G. W. (1950) Lancet, 258, 1154–1155.CrossRefGoogle Scholar
  5. Davis, S. (1973) In Rheology of Biological Systems, Gabelnick, H. L., and Litt, M. (eds.). Charles C. Thomas, Springfield, 111., pp. 158–194.Google Scholar
  6. Frey-Wyssling, A. (ed.) (1952) Deformation and Flow in Biological Systems. North-Holland, Amsterdam.Google Scholar
  7. Gabelnick, H.L. and Litt, M. (eds.) (1973) Rheology of Biological Systems Charles C Thomas, Springfield, 1ll Google Scholar
  8. Harvey, E. N. (1938) J. Appl. Phys 9, 68–80.Google Scholar
  9. Heilbrunn, L. V. (1926) J. Exp. Zool 43, 313–320.CrossRefGoogle Scholar
  10. Heilbrunn, L. V. (1958) The Viscosity of Protoplasm. Plasmatologia 2(1) (monograph). Springer-Verlag, Wien, 109 p.CrossRefGoogle Scholar
  11. King, R. G. (1966) Rheol. Acta 5, 41–44.CrossRefGoogle Scholar
  12. Lai, W. M., Kuei, S. C., and Mow, V. C. (1978) Rheological equations for synovial fluids. J. Biomech. Eng. Trans. ASME 100, 169–186.CrossRefGoogle Scholar
  13. Lamar, J. K., Shettles, L. B., and Delfs, E. (1940) Am. J. Physiol 129, 234–241.Google Scholar
  14. Lutz, R. J., Litt, M., and Chakrin, L. W. (1973) In Rheology of Biological Systems, Gabelnick, H. L., and Litt, M. (eds.). Charles C Thomas, Springfield, Ill., pp. 119–157.Google Scholar
  15. Ogston, A. G. (1970) In Chemistry and Molecular Biology of the Intercellular Matrix, Balazs, E. A. (ed.). Academic Press, New York, pp. 1231–1240.Google Scholar
  16. Ogston, A. G., and Stanier, J. E. (1953) J. Physiol. (London) 119, 224, and 253.Google Scholar
  17. Ogston, A. G., and Stanier, J. E. (1952) Biochemical J. 52, 149–156.Google Scholar
  18. Scott Blair, G. W. (1974) An Introduction to Biorheology. Elsevier, New York, 1974.Google Scholar
  19. Taylor, G. I. (1951) Proc. Roy. Soc. A (London) 209, 447–461.ADSzbMATHCrossRefGoogle Scholar
  20. Taylor, G. I. (1952) Proc. Roy. Soc. A (London) 211, 225–239.ADSzbMATHCrossRefGoogle Scholar
  21. von Khreningen-Guggenberger, J. (1933) Arch. für Gynäk 153, 64–66.CrossRefGoogle Scholar
  22. Wardell, J. R., Jr., Chakrin, L. W., and Payne, B. J. (1970) Am. Rev. Resp. Dis 101, 741–754.Google Scholar
  23. Wu, T. Y., Brokaw, C. J., and Brennen, C. (eds.) (1974) Swimming and Flying in Nature, 2 vols. Plenum Press, New York.Google Scholar
  24. Yih, C. S. (1977) Fluid Mechanics, a Concise Introduction to the theory Corrected edition. West River Press, Ann Arbor, Michigan.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations