Biomechanics pp 383-415 | Cite as

Bone and Cartilage

  • Y. C. Fung


Bone is hard and has a stress-strain relationship similar to many engineering materials. Hence stress analysis in bone can be made in a way similar to the usual engineering structural analysis. Figure 12.1:1 shows the stress-strain relationship of a human femur subjected to uniaxial tension. It is seen that dry bone is brittle and fails at a strain of 0.4%; but wet bone is less so, and fails at a strain of 1.2%.


Articular Cartilage Relaxation Test Synovial Joint Human Femur Endosteal Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amtmann, E. (1968) J. Biomech. 1, 271–277.CrossRefGoogle Scholar
  2. Amtmann, E. (1971) Ergebnisse der Anatomie und Entwicklungsgeschichte 44, 7–89.Google Scholar
  3. Amtmann, E. and Schmitt, H. P. (1968), Z. Anat. 127, 25–41.CrossRefGoogle Scholar
  4. Basset, C. A. L., and Pawlick, R. J. (1964) Nature 204, 652–653.ADSCrossRefGoogle Scholar
  5. Becker, R. O., and Murray, D. G. (1970) Clin. Orthopedics 73, 169–198.Google Scholar
  6. Boume, G. H. (ed.) (1972) The Biochemistry and Physiology of Bone, 2nd edn. Vol. 1: Structure. Vol. 2: Physiology and Pathology. Vol. 3: Development and Growth. Academic, New York.Google Scholar
  7. Brannan, E. W., Rockwood, C. A., and Potts, P. (1963) Aerospace Med. 34, 900–906.Google Scholar
  8. Brookes, M. (1971) The Blood Supply of Bone. An Approach to Bone Biology. Butter-worths, London.Google Scholar
  9. Cowin, S. C., and Hegedus, D. M. (1976) J. Elasticity 6 313–325, 337–352.Google Scholar
  10. Cowin, S. C., and Nachlinger, R. R. (1978) J. Elasticity 8, 285–295.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Crowningshield, R. D. and Pope, M. H. (1974) Ann. Biomed. Engineering 2, 217–225.CrossRefGoogle Scholar
  12. Currey, J. D. (1964) Biorheology 2, 1–10.Google Scholar
  13. Dietrick, J. E., Whedon, G., and Shorr, E. (1948) Am. J. Med. 4, 3–36.CrossRefGoogle Scholar
  14. Dowson, D. (1967) Proc. Institution Mech. Eng. (London) 181 Part 3J, 45–54. Bound volume entitled Lubrication and Wear in Living and Artificial Human Joints.Google Scholar
  15. Evans, F. G. (1957) Stress and Strain in Bones. Their Relation to Fractures and Osteogenesis. C. C. Thomas, Springfield, Ill.Google Scholar
  16. Evans, F. G. (1969) Artificial Limbs 13, 37–48.Google Scholar
  17. Evans, F. G. (1973) Mechanical Properties of Bone. Charles C Thomas, Springfield, Ill.Google Scholar
  18. Frost, H. M. (1964) The Laws of Bone Structure. Charles C Thomas, Springfield, Ill.Google Scholar
  19. Fukada, E. and Yasuda, I. (1957) J. Physiol. Soc. Japan 12, 1158–1162.ADSCrossRefGoogle Scholar
  20. Fukada, E. (1968) Biorheology 5, 199–208.Google Scholar
  21. Fung, Y. C. (1972) In Biomechanics: Its Foundations and Objectives, pp. 181–208. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  22. Gjelsvik, A. (1973) J. Biomech. 6, 69–77, 187–193.CrossRefGoogle Scholar
  23. Glücksmann, A. (1938) Anat. Record 72, 97–115.CrossRefGoogle Scholar
  24. Glücksmann, A. (1939) Anat. Record 73, 39–55.CrossRefGoogle Scholar
  25. Glücksmann, A. (1942) The role of mechanical stress in bone formation in vitro. J. of Anatomy 76, 231–239.Google Scholar
  26. Ham, A W. (1969) Histology, 6th edn. Lippincott, Philidelphia.Google Scholar
  27. Hert, J. A., Liskova, M., and Landa J. (1971) Folia Morphol. 19, 290–300, 301–317.Google Scholar
  28. Hert, J., Sklenska, A., and Liskova, M. (1971) Folia Morphol. 19, 378–387.Google Scholar
  29. Justus, R. and Luft, J. H. (1970) Calcified Tissue Res. 5, 222–235.CrossRefGoogle Scholar
  30. Kazarian, L. E., and van Gierke, H. E. (1969) Clin. Orthopedics 65, 67–75.Google Scholar
  31. Knese, K.-H. (1972) Knochenstruktur als Verbundbau. G. Thieme, Stuttgart.Google Scholar
  32. Kummer, B. K. F. (1972) In Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M. (eds.). Prentice-Hall, Englewood Cliffs, N.J., pp. 237–271.Google Scholar
  33. Lanyon, L. B., and Baggott D. G. (1976) J. Bone Joint Surg. 58B, 436–443.Google Scholar
  34. Linn, F. C. (1967) J. Bone Joint Surg. 49A, 1079–1098.Google Scholar
  35. Linn, F. C., and Radin, E. L. (1968) Arth. Rheum. 11 (5), 674–682.CrossRefGoogle Scholar
  36. MacConaill, M. A. (1932) J. Anatomy 66, 210–227.Google Scholar
  37. Mack, P. B., LaChange, P. A., Vost, G. P., and Vogt, F. B. (1967) Am. J. Roentgenol. 100, 503–511.Google Scholar
  38. Malcom, L. L. (1976) Frictional and deformational responses of articular cartilage interfaces to static and dynamic loading. Ph. D. thesis, Univ. of Calif., San Diego, La Jolla, Calif.Google Scholar
  39. Martin, B. (1972) The effects of geometric feedback in the development of osteoporosis. J. Biomech. 5, 447–455.CrossRefGoogle Scholar
  40. McCutchen, C. W. (1959) Nature 184, 1284–1285.ADSCrossRefGoogle Scholar
  41. Mow, V. C., Lipschitz, H., and Glimcher, M. J. (1977) Trans. Orthop. Res. Soc. 2 75.Google Scholar
  42. Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G. (1980) J. Biomech. Eng. Trans. ASME 102, 73–84.CrossRefGoogle Scholar
  43. Ogston, A. G., and Stanier, J. E. (1953) J. Physiol. 119 244–252, and 253–258.Google Scholar
  44. Pauwels, F. (1948) Z. Anat. 114, 129–166.CrossRefGoogle Scholar
  45. Pauwels, F. (1950) Z. Anat. 115, 327–351.CrossRefGoogle Scholar
  46. Pauwels, F. (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer-Verlag, New York.Google Scholar
  47. Powell, M. J. D. (1965) Computer J. 7, 303–307.zbMATHCrossRefGoogle Scholar
  48. Radin, E. L., Swann, D. A., and Weisser, P. A. (1970) Nature, 228, 377.ADSCrossRefGoogle Scholar
  49. Reilly, D. T., and Burstein, A. H. (1974) J. Bone Joint Surg. 56A, 1001–1022.Google Scholar
  50. Rhinelander, F. W. (1972) In The Biochemistry and Physiology of Bone, 2nd edn. Boume, G. H. (ed.). Academic, New York, pp. 2–78.Google Scholar
  51. Roux, W. (1895) Gasammelte Abhandlungen uber Entwicklungsmechanik der Organismen. I u. I I. Engelmann, Leipzig.CrossRefGoogle Scholar
  52. Schmitt, H. P. (1968) Z. Anat. 127, 1–24.CrossRefGoogle Scholar
  53. Torino, A. J., Davidson, C. L., Klopper, P. J., and Lindau, L. A. (1976) J. Bone Joint Surg. 58B, 107–113.Google Scholar
  54. Torzilli, P. A., and Mow, V. C. (1972) J. Biomech. 9, 541–522, 587–606.Google Scholar
  55. Unsworth, A., Dowson, D., and Wright, V. (1975) J. Lub. Tech. Trans. ASME 97, 369–376.CrossRefGoogle Scholar
  56. Woo, S. L. Y., Akeson, W. H., Coutts, R. D., Rutherford, L., Doty, D., Jemmott, G. F., and Amiel, D. (1976) J. Bone Joint Surg. 58A, 190–195.Google Scholar
  57. Woo, S. L.-Y., Simon, B. R., Kuei, S. C., and Akeson, W. H. (1979) J. Biomech. Eng., Trans. ASME 102, 85–90.CrossRefGoogle Scholar
  58. Wolff, J. (1884) Sitz. Ber. Preuss. Akad. d. Wiss. 22. Sitzg., physik. -math. Kl.Google Scholar
  59. Wonder, C. C., Briney, S. R., Kral, M., and Skavgstad, C. (1960) Nature 188, 151–152.ADSCrossRefGoogle Scholar
  60. Yamada, H. (1970) Strength of Biological Materials. Williams and Wilkins, Baltimore.Google Scholar
  61. Young, J. Z. (1957) The Life of Mammals. Oxford University Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations