Genetics of Temperate Bacteriophages

  • Edward A. Birge
Part of the Springer Series in Microbiology book series (SSMIC)

Abstract

For all of the bacteriophages discussed in the preceding chapters, a successful phage infection always results in the immediate production of progeny virions. However, many bacteriophages are known for which there is an alternative outcome to phage infection. Instead of the customary unrestrained DNA replication and phage assembly, there is a temperate response in which the bacteriophage sets up housekeeping within the bacterial cell and maintains a stable relationship with that cell and all its progeny for many generations. The varied ways in which the temperate response can be accomplished are the subject of this chapter. The physical properties of the temperate bacteriophages discussed in this chapter are summarized in Table 6–1.

Keywords

Bacteriophage Lambda Phage Infection Temperate Bacteriophage Turbid Plaque Lambda Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  1. Calendar, R., Geisselsoder, J., Sunshine, M.G., Six, E.W., Lindqvist, B.H. 1977. The P2-P4 transactivation system, pp.329–344. In: Fraenkel-Conrat, H., Wagner, R.R. (eds.) Comprehensive Virology, vol. 8. New York: Plenum Press.Google Scholar
  2. Campbell, A. 1977. Defective bacteriophages and incomplete prophages, pp. 259–328. In: Fraenkel-Conrat, H., Wagner, R.R. (eds.) Comprehensive Virology, vol. 8. New York: Plenum Press.Google Scholar
  3. Echols, H., Murialdo, H. 1978. Genetic map of bacteriophage lambda. Microbiological Reviews 42:577–591.PubMedGoogle Scholar
  4. Hayes, W. 1980. Portraits of viruses: bacteriophage lambda. Intervirology 13:133–153.PubMedCrossRefGoogle Scholar
  5. Hemphill, H.E., Whiteley, H.R. 1975. Bacteriophages of Bacillus subtilis. Bacteriological Reviews 39:257–315.PubMedGoogle Scholar
  6. Hohn, T., Katsura, I. 1977. Structure and assembly of bacteriophage lambda. Current Topics in Microbiology and Immunology 78:69–110.PubMedCrossRefGoogle Scholar
  7. Nash, H. A. 1977. Integration and excision of bacteriophage X. Current Topics in Microbiology and Immunology 78:171–199.PubMedCrossRefGoogle Scholar
  8. Skalka, A.M. 1977. DNA replication-bacteriophage lambda. Current Topics in Microbiology and Immunology 78:201–237.PubMedCrossRefGoogle Scholar
  9. Susskind, M.M., Botstein, D. 1978. Molecular genetics of bacteriophage P22. Microbiological Reviews 42:385–413.PubMedGoogle Scholar
  10. Weisberg, R.A., Gottesman, S., Gottesman, M.E. 1977. Bacteriophage X: the lysogenic pathway, pp. 197–258. In: Fraenkel-Conrat, H., Wagner, R.R. (eds.) Comprehensive Virology, vol. 8. New York, Plenum Press.Google Scholar

Specialized

  1. Appendix C. 1977. Temperate bacteriophages, pp. 705–756. In: Bukhari, A.I., Shapiro, J.A., Adhya, S.L. (eds.) DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  2. Bertani, L.E., Bertani, G. 1971. Genetics of P2 and related phages. Advances in Genetics 16:199–237.PubMedCrossRefGoogle Scholar
  3. Calendar, R., Six, E.W., Kahn, F. 1977. Temperate coliphage P2 as an insertion element, pp. 395–402. In: Bukhari, A.I., Shapiro, J.A., Adhya, S.L. (eds.) DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  4. Chaconas, G., Harshey, R.M., Bukhari, A.I. 1980. Associatior of Mu-containing plasmids with the E. coli chromosome upon prophage induction. Proceedings of the National Academy of Sciences of the United States of America 77:1778–1782.PubMedCrossRefGoogle Scholar
  5. Chow, L.T., Bukhari, A.I. 1977. Bacteriophage Mu genome: structural studies on Mu DNA and Mu mutants carrying insertions, pp. 295–306. In: Bukhari, A.I., Shapiro, J.A., Adhya, S.L. (eds.) DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  6. Kahn, M., Ow, D., Sauer, B., Rabinowitz, A., Calendar, R. 1980. Genetic analysisGoogle Scholar
  7. Ptashne, M. 1967. Specific binding of the X phage repressor to X DNA. Nature 214:232–234.PubMedCrossRefGoogle Scholar
  8. van de Putte, P., Cramer, S., Giphart-Gassler, M. 1980. Invertible DNA determines host specificity of bacteriophage Mu. Nature 286:218–222.CrossRefGoogle Scholar
  9. Shaw, J.E., Murialdo, H. 1980. Morphogenetic genes C and Nu3 overlap in bacteriophage X. Nature 283:30–35.PubMedCrossRefGoogle Scholar
  10. Susskind, M.M. 1980. A new gene of bacteriophage P22 which regulates synthesis of antirepressor. Journal of Molecular Biology 138:685–713.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Edward A. Birge
    • 1
  1. 1.Department of Botany and MicrobiologyArizona State UniversityTempeUSA

Personalised recommendations