Skip to main content

Repair and Recombination of DNA Molecules

  • Chapter
Bacterial and Bacteriophage Genetics

Part of the book series: Springer Series in Microbiology ((SSMIC))

  • 128 Accesses

Abstract

Every organism has mechanisms for maintaining the integrity of its nucleic acid (i.e., for repairing any damage). Nevertheless, most organisms, including even the bacteria and viruses, exhibit some sort of genetic exchange. The two processes may seem antithetical, since recombination, the movement of genetic information from one molecule of nucleic acid to another, implies that the nucleic acid undergoes some kind of structural alteration. However, as will be discussed in this chapter, many of the steps involved in the completion of the recombination process are the same as those involved in repair, and recombination can be looked on as a process in which the potential for damage to the nucleic acid is outweighed by the potential benefit to be derived from the new genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Arber, W. 1979. Promotion and limitation of genetic exchange. Science 205:361–365.

    Article  PubMed  CAS  Google Scholar 

  • Catcheside, D.G. 1977. The Genetics of Recombination. London: Arnold; Baltimore: University Park Press.

    Google Scholar 

  • Clark, A.J., Volkert, M.R. 1978. A new classification of pathways repairing pyrimidine dimer damage in DNA, pp. 57–72. In: Hanawalt, P.C., Friedberg, E.C., Fox, C.F. (eds.) DNA Repair Mechanisms. New York: Academic Press.

    Google Scholar 

  • Eisenstark, A. 1977. Genetic recombination in bacteria. Annual Review of Genetics 11:369–396.

    Article  PubMed  CAS  Google Scholar 

  • Fox, M.S. 1978. Some features of genetic recombination in prokaryotes. Annual Review of Genetics 12:47–68.

    Article  PubMed  CAS  Google Scholar 

  • Hanawalt, P.C., Cooper, P.K., Ganesan, A.K., Smith, C.A. 1979. DNA repair in bacteria and mammalian cells. Annual Review of Biochemistry 48:783–836.

    Article  PubMed  CAS  Google Scholar 

  • Hofschneider, P.H., Starlinger, P. (eds.) 1978. Integration and Excision of DNA Molecules. New York: Springer-Verlag.

    Google Scholar 

  • Howard-Flanders, P. 1978. Historical perspectives and keynotes on DNA repair, pp. 105–111. In: Hanawalt, P.C., Friedberg, E.C., Fox, C.F. (eds.) DNA Repair Mechanisms. New York: Academic Press.

    Google Scholar 

  • Low, K.B., Porter, D.D. 1978. Modes of gene transfer and recombination in bacteria. Annual Review of Genetics 12:249–287.

    Article  PubMed  CAS  Google Scholar 

  • Radding, C.M. 1978. Genetic recombination: strand transfer and mismatch repair. Annual Review of Biochemistry 47:847–880.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F.W. 1979. Genetic Recombination: Thinking About It in Phage and Fungi. San Francisco: Freeman.

    Google Scholar 

  • Starlinger, P. 1977. DNA rearrangements in prokaryotes. Annual Review of Genetics 11:103–126.

    Article  PubMed  CAS  Google Scholar 

  • Toompuu, O.G., Scherbakov, V.P. 1980. Genetic recombination: formal implications of a crossed strand-exchange between two homologous DNA molecules. Journal of Theoretical Biology 82:497–520.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, R.A., Adhya, S. 1977. Illegitimate recombination in bacteria and bacteriophage. Annual Review of Genetics 11:451–473.

    Article  PubMed  CAS  Google Scholar 

Specialized

  • Arthur, A., Sherratt, D. 1979. Dissection of the transposition process: a transposonencoded site-specific recombination system. Molecular and General Genetics 175:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Beck, C.F. 1979. A genetic approach to analysis of transposons. Proceedings of the National Academy of Sciences of the United States of America 76:2376–2380.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, M., Roulet, E., Silver, L., Boy de la Tour, E., Caro, L. 1979. Tn10 mediated integration of the plasmid R100.1 into the bacterial chromosome: inverse transposition. Molecular and General Genetics 173:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Cozzarelli, N.R. 1980. DNA gyrase and the supercoiling of DNA. Science 207:953–960.

    Article  PubMed  CAS  Google Scholar 

  • Defais, M., Jeggo, P., Samson, L., Schendel, P.F. 1980. Effect of the adaptive response on the induction of the SOS pathway in E. coli K-12. Molecular and General Genetics 177:653–660.

    PubMed  CAS  Google Scholar 

  • Echols, H., Green, L., 1979. Some properties of site-specific and general recombination inferred from int-initiated exchanges by bacteriophage lambda. Genetics 93:297–307.

    PubMed  CAS  Google Scholar 

  • Howard-Flanders, P., Cassuto, E., Ross, P. 1979. Early steps in genetic recombination induced by damaged DNA: cutting in trans in E. coli cells and in protein extracts. Cold Spring Harbor Symposia on Quantitative Biology 43:1073–1082.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, P.-L., Ross, W., Landy, A. 1980. The lambda phage att site: functional limits and interaction with int protein. Nature 285:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N. 1979. DNA sequence analysis of Tn 10 insertions: origin and role of 9bp flanking repetitions during Tn 10 translocation. Cell 16:711–720.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N., Steele, D.A., Reichardt, K., Botstein, D. 1979. Specificity of insertion by the translocatable tetracycline-resistance element Tn10. Genetics 92:1023–1040.

    PubMed  CAS  Google Scholar 

  • Little, J.W., Edmiston, S.H., Pacelli, L.Z., Mount, D.W. 1980. Cleavage of the E. coli lexA protein by the recA protease. Proceedings of the National Academy of Sciences of the United States of America 77:3225–3229.

    Article  PubMed  CAS  Google Scholar 

  • McPartland, A., Green, L., Echols, H. 1980. Control of recA gene RNA in E. coli: regulatory and signal genes. Cell 20:731–737.

    Article  PubMed  CAS  Google Scholar 

  • Nisen, P., Purucker, M., Shapiro, L. 1979. DNA sequence homologies among bacterial insertion sequence elements and genomes of various organisms. Journal of Bacteriology 140:588–596.

    PubMed  CAS  Google Scholar 

  • Porter, R.D., McLaughlin, T., Low, B. 1979. Transduction versus “conjuduction”: evidence for multiple roles for exonuclease V in genetic recombination in E. coli. Cold Spring Harbor Symposia on Quantitative Biology 43:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Potter, H., Dressler, D. 1978. In vitro system from E. coli that catalyzes generalized genetic recombination. Proceedings of the National Academy of Sciences of the United States of America 75:3698–3702.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D.G., Swan, J., Kleckner, N. 1979. Physical structures of Tn 10-promoted deletions and inversions: role of 1400 bp inverted repetitions. Cell 16:721–731.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D.G., Swan, J., Kleckner, N. 1979. Nearly precise excision: a new type of DNA alteration associated with the translocatable element Tn 10. Cell 16:733–738.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J.A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proceedings of the National Academy of Sciences of the United States of America 76:1933–1937.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, T., DasGupta, C., Cunningham, R.P., Radding, C.M. 1980. Homologous pairing in genetic recombination: formation of D-loops by combined action of recA protein and a helix destabilizing protein. Proceedings of the National Academy of Sciences of the United States of America 77:2606–2610.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F.W., Stahl, M.M., Malone, R.E., Crasemann, J.M., 1980. Directionality and nonreciprocality of Chi-stimulated recombination in phage X. Genetics 94:235–248.

    PubMed  CAS  Google Scholar 

  • Sutherland, J.C. 1978. Mechanism of action of the photoreactivating enzyme from E. coli: recent results, pp. 137–140. In: Hanawalt, P.C., Friedberg, E.C., Fox, C.F. (eds.) DNA Repair Mechanisms. New York: Academic Press.

    Google Scholar 

  • Warner, R.C., Fishel, R.A., Wheeler, F.C. 1979. Branch migration in recombination. Cold Spring Harbor Symposia on Quantitative Biology 43:957–968.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.H. 1979. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proceedings of the National Academy of Sciences of the United States of America 76:3641–3645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (1981). Repair and Recombination of DNA Molecules. In: Bacterial and Bacteriophage Genetics. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1749-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1749-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1751-8

  • Online ISBN: 978-1-4757-1749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics