Additive Number Theory

  • Richard K. Guy
Part of the Unsolved Problems in Intuitive Mathematics book series (PBM, volume 1)

Abstract

One of the most infamous problems is Goldbach’s conjecture that every even number greater than 4 is expressible as the sum of two odd primes. Vinogradov proved that every odd number greater than 3315 is the sum of three primes and Chen Jing-Run has shown that all large enough even numbers are the sum of a prime and the product of at most two primes.

Keywords

Number Theory Unsolved Problem Acta Arith Addition Chain Postage Stamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Chen Jing-Run, On the representation of a large even number as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973) 157–176; MR 55#7959; II 21 (1978) 421–430; MR 80e: 10037.Google Scholar
  2. J. G. van der Corput, Sur l’hypothèse de Goldbach pour presque tous les nombres pairs, Acta Arith. 2 (1937) 266–290.Google Scholar
  3. N. G. Cudakov, On the density of the set of even numbers which are not representable as the sum of two odd primes, Izv. Akad. Nauk SSSR Ser. Mat. 2 (1938) 25–40.Google Scholar
  4. N. G. Cudakov, On Goldbach-Vinogradov’s theorem, Ann. of Math. (2) 48 (1947) 515–545; MR 9, 11.Google Scholar
  5. T. Estermann, On Goldbach’s problem: proof that almost all even positive integers are sums of two primes, Proc. London Math. Soc. (2) 44 (1938) 307–314.Google Scholar
  6. T. Estermann, Introduction to modern prime number theory, Cambridge Tracts in Mathematics 41, 1952.Google Scholar
  7. H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975) 353–370.MathSciNetMATHGoogle Scholar
  8. Pan Cheng Dong, Ding Xia Xi and Wang Yuan, On the representation of every large even integer as the sum of a prime and an almost prime, Sci. Sinica 18(1975) 599610; MR 57 #5897.Google Scholar
  9. P. M. Ross, On Chen’s theorem that each large even number has the form p i + p 2 or Pi + P2P3, J. London Math. Soc. (2) 10 (1975) 500–506.Google Scholar
  10. M. L. Stein and P. R. Stein, New experimental results on the Goldbach conjecture, Math. Mag. 38 (1965) 72–80; MR 32 #4109.Google Scholar
  11. Robert C. Vaughan, On Goldbach’s problem, Acta Arith. 22 (1972) 21–48.MathSciNetGoogle Scholar
  12. Robert C. Vaughan, A new estimate for the exceptional set in Goldbach’s problemGoogle Scholar
  13. Proc. Sympos. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St Louis, 1972) 315–319.Google Scholar
  14. I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937) 169–172.MATHGoogle Scholar
  15. I. M. Vinogradov, Some theorems concerning the theory of primes, Mat. Sb. N.S. 2 (44) (1937) 179–195.MATHGoogle Scholar
  16. Dan Zwillinger, A Goldbach conjecture using twin primes, Math. Comput. 33 (1979) 1071; MR 80b: 10071.Google Scholar
  17. L. Moser, Notes on number theory III.On the sum of consecutive primes, Canad. Math. Bull. 6 (1963) 159–161; MR 28 #75.Google Scholar
  18. W. E. Briggs, Prime-like sequences generated by a sieve process, Duke Math. J. 30 (1963) 297–312, MR 26 #6145.Google Scholar
  19. R. G. Buschman and M. C. Wunderlich, Sieve-generated sequences with translated intervals, Canad. J. Math. 19 (1967) 559–570; MR 35 #2855Google Scholar
  20. R. G. Buschman and M. C. Wunderlich, Sieves with generalized intervals, Boll. Un. Mat. Ital. (3) 21 (1966) 362–367.Google Scholar
  21. Paul Erdös and Eri Jabotinsky, On sequences of integers generated by a sieving process. I, II. Nederl Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20 (1958) 115–128; MR 21 #2628.Google Scholar
  22. Verna Gardiner, R. Lazarus, N. Metropolis, and S. Ulam, On certain sequences of integers defined by sieves, Math. Mag. 29 (1956) 117–122; MR 17, 711.Google Scholar
  23. David Hawkins and W. E. Briggs, The lucky number theorem, Math. Mag. 31(1957–58) 81–84, 277–280; MR 21 #2629, 2630.Google Scholar
  24. M. C. Wunderlich, Sieve generated sequences, Canad. J. Math. 18 (1966) 291–299; MR 32 #5625.Google Scholar
  25. M. C. Wunderlich, A general class of sieve-generated sequences, Acta Arith. 16 (196970) 41–56; MR 39 #6852.Google Scholar
  26. M. C. Wunderlich and W. E. Briggs, Second and third term approximations of sieve-generated sequences, Illinois J. Math. 10 (1966) 694–700; MR 34 #153.Google Scholar
  27. A. M. Mian and S. Chowla, on the B2-sequence of Sidon, Proc. Nat. Acad. Sci. India. Sect. A 14 (1949) 3–4; MR 7, 243.Google Scholar
  28. P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
  29. R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71. Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetCrossRefGoogle Scholar
  30. S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257.Google Scholar
  31. A. M. Mian and S. Chowla, on the B2-sequence of Sidon, Proc. Nat. Acad. Sci. India. Sect. A 14 (1949) 3–4; MR 7, 243.Google Scholar
  32. P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
  33. R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71.MathSciNetMATHCrossRefGoogle Scholar
  34. Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetMATHCrossRefGoogle Scholar
  35. S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257. 7, 243. P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
  36. R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71.MathSciNetMATHCrossRefGoogle Scholar
  37. Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetMATHCrossRefGoogle Scholar
  38. S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257.Google Scholar
  39. John A. Ewell, On the determination of sets by sets of sums of fixed order, Canad. J. Math. 20 (1968) 596–611.MathSciNetCrossRefGoogle Scholar
  40. B. Gordon, A. S. Fraenkel, and E. G. Straus, On the determination of sets by the sets of sums of a certain order, Pacific J. Math. 12 (1962) 187–196; MR 27 0576.Google Scholar
  41. J. L. Selfridge and E. G. Straus, On the determination of numbers by their sums of a fixed order, Pacific J. Math. 8 (1958) 847–856; MR 22 #4657.Google Scholar
  42. Alfred Brauer, On addition chains, Bull. Amer. Math. Soc. 45 (1939) 736–739; MR 1, 40. Paul Erdös, Remarks on number theory III. On addition chains, Acta Arith. 6 (1960) 77–81.MathSciNetGoogle Scholar
  43. A. A. Gioia and M. V. Subbarao, The Scholz-Brauer problem in addition chains II, Congressus Numerantium XXII, Proc. 8th Manitoba Conf. Numerical Math. Comput. 1978, 251–274; MR 80i:10078; Zbl. 408. 10037.Google Scholar
  44. A. A. Gioia, M. V. Subbarao and M. Sugunamma, The Scholz-Brauer problem in addition chains, Duke Math. J. 29 (1962) 481–487; MR 25 #3898.Google Scholar
  45. W. Hansen, Zum Scholz-Brauerschen Problem, J. reine angew. Math. 202 (1959) 129–136; MR 25 #2027.Google Scholar
  46. A. M. II’in, On additive number chains (Russian), Problemy Kibernet. 13 (1965) 245–248. Donald Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1969, 398–422.Google Scholar
  47. Arnold Scholz, Aufgabe 253, Jber. Deutsch. Math.-Verein. II 47 (1937) 41–42 (supplement).Google Scholar
  48. K. B. Stolarsky, A lower bound for the Scholz-Brauer problem, Canad. J. Math. 21 (1969) 675–683; MR 40 #114.Google Scholar
  49. E. G. Straus, Addition chains of vectors, Amer. Math. Monthly 71 (1964) 806–808. Edward G. Thurber, The Scholz-Brauer problem on addition chains, Pacific J. Math. 49 (1973) 229–242; MR 49 #7233.Google Scholar
  50. Edward G. Thurber, Addition chains and solutions of l(2n) = 1(n) and 1(2“ — 1) = n + 1(n) — 1, Discrete Math. 16 (1976) 279–289; MR 55 #5570; Zbl. 346.10032.Google Scholar
  51. W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer. Math. Soc. 4 (1953) 462–463; MR 14, 949.Google Scholar
  52. C. T. Wyburn, A note on addition chains, Proc. Amer. Math. Soc. 16 (1965) 1134.Google Scholar
  53. P. T. Bateman, Remark on a recent note on linear forms, Amer. Math. Monthly 65 (1958) 517–518.MathSciNetMATHCrossRefGoogle Scholar
  54. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways, Academic Press, London, 1981, Chap. 18.Google Scholar
  55. Alfred Brauer, On a problem of partitions, Amer. J. Math. 64 (1942) 299–312.MathSciNetMATHCrossRefGoogle Scholar
  56. A. Brauer and B. M. Seelbinder, On a problem of partitions, II, ibid. 76 (1954) 343–346. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. reine angew. Math. 211 (1962) 215–220.MathSciNetMATHGoogle Scholar
  57. J. S. Byrnes, On a partition problem of Frobenius, J. Combin. Theory Ser. A 17 (1974) 162–166; MR 50 #234.Google Scholar
  58. P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arith. 21 (1972) 399–408.MathSciNetMATHGoogle Scholar
  59. B. R. Heap and M. S. Lynn, A graph-theoretic algorithm for the solution of a linear diophantine problem of Frobenius, Numer. Math. 6 (1964) 346–354; MR 30 #4689.Google Scholar
  60. B. R. Heap and M. S. Lynn, On a linear diophantine problem of Frobenius: An improved algorithm, ibid 7 (1964) 226–231; MR 31 #1227. Google Scholar
  61. Mordechai Lewin, On a linear diophantine problem, Bull. London Math. Soc. 5 (1973) 75–78; MR 47 #3311.Google Scholar
  62. N. S. Mendelsohn, A linear diophantine equation with applications to non-negative matrices, Ann. N.Y. Acad. Sci. 175 (1970) 287–294.MathSciNetMATHGoogle Scholar
  63. A. Nijenhuis and H. S. Wilf, Representations of integers by linear forms in non-negative integers, J. Number Theory 4 (1972) 98–106.MathSciNetMATHCrossRefGoogle Scholar
  64. J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956) 465–469.MathSciNetMATHCrossRefGoogle Scholar
  65. O. J. Rödseth, On a linear Diophantine problem of Frobenius, J. reine angew. Math. 301 (1978) 171–178.MathSciNetMATHGoogle Scholar
  66. E. S. Selmer and O. Beyer, On the linear diophantine problem of Frobenius in three variables, J. reine angew. Math. 301 (1978) 161–170.MathSciNetMATHGoogle Scholar
  67. J. J. Sylvester, Math. Quest. Educ. Times 41 (1884) 21.Google Scholar
  68. Herbert S. Wilf, A circle of lights algorithm for the “money changing problem,” Amer. Math. Monthly 85 (1978) 562–565.MathSciNetMATHCrossRefGoogle Scholar
  69. V. S. Bludov and V. I. Uberman, A certain sequence of additively distinct numbers (Russian) Kibernetika (Kiev) 10 (1974) #5, 111–115; MR 53 #332; Zbl. 291. 10043.Google Scholar
  70. V. S. Bludov and V. L Uberman, On a sequence of additively differing numbers, Dopovidi Akad. Nauk. Ukrain. SSR Ser. A (1974) 483–486, 572; MR 50 #7007; Zbl. 281. 10030.Google Scholar
  71. J. H. Conway and R. K. Guy, Sets of natural numbers with distinct sums, Notices Amer. Math. Soc. 15 (1968) 345.Google Scholar
  72. J. H. Conway and R. K. Guy, Solution of a problem of P. Erdös, Colloq. Math. 20 (1969) 307.Google Scholar
  73. P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres, Bruxelles, 1955, Liège and Paris, 1956, 127–137, esp. p. 137.Google Scholar
  74. Hansraj Gupta, Some sequences with distinct sums, Indian J. Pure Math. 5 (1974) 1093–1109; MR 57 #12440.Google Scholar
  75. B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull. 8 (1965) 477–490.MATHCrossRefGoogle Scholar
  76. B. Lindström, Om ett problem av Erdös for talfoljder, Nordisk Mat. Tidskrift 16, 1–2 (1968) 29–30, 80.Google Scholar
  77. Paul Smith, Problem E 2536*, Amer. Math Monthly 82 (1975) 300. Solutions and comments, 83 (1976) 484.Google Scholar
  78. V. I. Uberman, The Conway-Guy conjecture and the density of almost geometric sequences (Russian).Google Scholar
  79. V. I. Uberman, On the theory of a method of determining numbers whose sums do not coincide (Russian), Proc. Sem. Methods Math. Simulation & Theory Elec. Circuits, Izdat Nauk Dumka (Kiev) 1973, 76–78, 203; MR 51 #7363.Google Scholar
  80. V. I. Uberman, Approximation of additively differing numbers (Russian) Proc. Sem. Methods Math. Simulation & Theory Elec. Circuits, Naukova Dumka, Kiev, 11 (1973) 221–229; MR 51 #7363; Zbl. 309. 68048.Google Scholar
  81. V. I. Uberman and V. I. Sleinikov, A computer-aided investigation of the density of additive detecting number systems (Russian), Akad. Nauk Ukrain. SSR, Fiz.-Tehn. Inst. Nizkikh Temperatur, Kharkov, 1978; 6O pp.Google Scholar
  82. M. Ajtai, J. Komlôs and E. Szemerédi, European Combin. J. (to appear). R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Heir. 37 (1962–63) 141–147.Google Scholar
  83. P. Erdös and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956) 67–73.MathSciNetMATHCrossRefGoogle Scholar
  84. P. Erdös and E. Szemerédi, The number of solutions of m = 4, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (1973) 83–90.CrossRefGoogle Scholar
  85. P. Erdös and P. Turdn, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941) 212–215; MR 3, 270. Addendum, 19 (1944) 208; MR 7,242.Google Scholar
  86. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math. 1 (1980) 382–404.MathSciNetMATHCrossRefGoogle Scholar
  87. H. Halberstam and K. F. Roth, Sequences, Vol. I, Oxford Univ. Press, 1966, Chapter II. F. Krückeberg, Bz Folgen und verwandte Zahlenfolgen, J. reine angew. Math. 206 (1961) 53–60.Google Scholar
  88. B. Lindstrom, An inequality for B2-sequences, J. Combin. Theory 6 (1969) 211–212; MR 38 #4436.Google Scholar
  89. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938) 377–385.MathSciNetCrossRefGoogle Scholar
  90. Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe I, II, J. reine angew. Math. 194 (1955) 40–65, 111–140; MR 17, 713.Google Scholar
  91. L. D. Baumert, Cyclic Difference Sets,Lecture notes in Math. 182 Springer-Verlag, New York, 1971.Google Scholar
  92. M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and N. J. A. Sloane, Bounds for binary codes of length less than 25, IEEE Trans. Information Theory IT-24 (1978) 81–93.Google Scholar
  93. P. Erdös and H. Hanani, On a limit theorem in combinatorical analysis, Publ. Math. Debrecen 10 (1963) 10–13.Google Scholar
  94. T. A. Evans and H. Mann, On simple difference sets, Sankhyd 11(1951) 357–364; MR 13, 899.Google Scholar
  95. R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Information Theory IT-26 (1980).Google Scholar
  96. R. L. Graham and N. J. A. Sloane, On constant weight codes and harmonious graphs, Utilitas Math. (to appear).Google Scholar
  97. J. I. Hall, A. J. E. M. Jensen, A. W. J. Kolen and J. H. van Lint, Equidistant codes with distance 12, Discrete Math. 17 (1977) 71–83.MathSciNetMATHCrossRefGoogle Scholar
  98. M. Hall, Cyclic projective planes, Duke Math. J. 14 (1947) 1079–1090; MR 9, 370.Google Scholar
  99. D. McCarthy, R. C. Mullin, P. J. Schellenberg, R. G. Stanton, and S. A. VanstoneGoogle Scholar
  100. On approximations to a projective plane of order 6, Ars Combinatoria 2 (1976) 111–168.MathSciNetGoogle Scholar
  101. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.Google Scholar
  102. J. Schönheim, On maximal systems of k-tuples, Stud. Sci. Math. Hungar. 1 (1966) 363–368.MATHGoogle Scholar
  103. R. G. Stanton, J. G. Kalbfleisch, and R. C. Mullin, Covering and packing designs, in Proc. 2nd Conf. Combin. Math. and Appl., Chapel Hill, 1970, 428–450.Google Scholar
  104. S. C. Bose and S. Chowla, Report Inst. Theory of Numbers, Univ. of Colorado, Boulder, 1959.Google Scholar
  105. B. Lindström, A remark on B4-sequences, J. Combin. Theory 7 (1969) 276–277.MATHCrossRefGoogle Scholar
  106. R. Alter and J. A. Barnett, Remarks on the postage stamp problem with applications to computers, Congressus Numerantium XIX,Proc. 8th S.E. Conf. Combin., Graph Theory, Comput., Utilitas Math. 1977, 43–59; MR 57 #12246. Google Scholar
  107. R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math Monthly 87 (1980) 206–210.MathSciNetMATHCrossRefGoogle Scholar
  108. N. Hämmerer and G. Hofmeister, Zu einer Vermutung von Rohrbach, J. reine angew. Math. 286/287 (1976) 239–247; MR 54 #10181. Google Scholar
  109. E. Härtter, Basen für Gitterpunktmengen, J. reine angew. Math. 202 (1959) 153–170; MR 22A #31.Google Scholar
  110. R. L. Heimer and H. Langenbach, The stamp problem, J. Recreational Math. 7 (1974) 235–250.MathSciNetGoogle Scholar
  111. G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. reine angew. Math 232 (1968) 77–101; MR 38 #1068. Google Scholar
  112. G. Hofmeister, Endliche additive Zahlentheorie, Kapitel 1, Das Reichweitenproblem, Joh. Guttenberg-Univ. Mainz, 1976Google Scholar
  113. G. Hofmeister and H. Schell, Reichweiten von Mengen natürlicher Zahlen I, Norske Vid. Selsk. Skr. (Trondheim) 1970 #10, 5pp; MR 44 #1642.Google Scholar
  114. W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. reine angew. Math. 238 (1969) 161–168 (and see 194–220); MR 40 #117, 116.Google Scholar
  115. W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377–380; MR 40 #6745. L. Moser, On the representation of 1, 2,…, n by sums, Acta Arith. 6 (1960) 11–13; MR 23A #133.Google Scholar
  116. L.Moser, J. R. Pounder and J. Riddell, On the cardinality of h-bases for n, J. London Math. Soc. 44 (1969) 397–407; MR 39 #162.Google Scholar
  117. L. Moser and J. Riddell. On additive h-bases for n, Colloq. Math. 9 (1962) 287–290; MR 26 #1295.Google Scholar
  118. Arnulf Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg 48 (1979) 118–124; MR 80g:10058. Google Scholar
  119. M. B. Nathanson, Additive h-bases for lattice points, 2nd Internat. Conf. Combin. Math., Annals N.Y. Acad. Sci. 319 (1979) 413–414; MR 81e: 10041.Google Scholar
  120. J. Riddell, On bases for sets of integers, Master’s thesis, Univ. of Alberta, 1960.Google Scholar
  121. J. Riddell and C. Chan, Some extremal 2-bases, Math. Comput. 32 (1978) 630–634; MR 57 #16244; Zbl. 388. 10032.Google Scholar
  122. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937)1–30; Zbl. 15, 200.Google Scholar
  123. H. Rohrbach, Anwendung eines Satzes der additiven Zahlentheorie auf eine graphentheoretische Frage, Math. Z. 42 (1937) 538–542.MathSciNetCrossRefGoogle Scholar
  124. R. G. Stanton, J. A. Bate and R. C. Mullin, Some tables for the postage stamp problem, Congressus Numerantium XII,Proc. 4th Manitoba Conf. Numer. Math. Winnipeg 1974, 351–356; MR 51 #7887.Google Scholar
  125. S. L. G. Choi, On sequences not containing a large sum-free subsequence, Proc. Amer. Math. Soc. 41 (1973) 415–418; MR 48 #3910.Google Scholar
  126. S. L. G. Choi, On a combinatorial problem in number theory, Proc. London Math. Soc. (3) 23 (1971) 629–642; MR 45 #1867.Google Scholar
  127. P. H. Diananda and H.-P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad. 45 (1969) 1–5; MR 39 #6968.Google Scholar
  128. Leo Moser, Advanced problem 4317, Amer. Math Monthly 55 (1948) 586; solution Robert Steinberg 57 (1950) 345.Google Scholar
  129. Anne Penfold Street, A maximal sum-free set in A5, Utilitas Math. 5 (1974) 85–91; MR49#7156.Google Scholar
  130. Anne Penfold Street, Maximal sum-free sets in abelian groups of order divisible by three, Bull. Austral. Math. Soc. 6 (1972) 439–441; MR 46 #5484. Corrigenda 7 (1972) 317–318; MR 47 #5147.Google Scholar
  131. P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959) 358–560; MR 21 #5595.Google Scholar
  132. H. P. Yap, Maximal sum-free sets in finite abelian groups, Bull. Austral. Math. Soc. 4 (1971) 217–223; MR 43 #2081 [and see ibid 5 (1971) 43–54; MR 45 #3574; Nanta Math. 2 (1968) 68–71; MR 38 #3345; Canad. J. Math. 22 (1970) 1185–1195; MR 42 #1897; J. Number Theory 5 (1973) 293–300; MR 48 #11356].Google Scholar
  133. P. Erdös, Some problems in number theory, in Computers in Number Theory, Academic Press, London and New York, 1971, 405–413.Google Scholar
  134. P. Erdös and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1969)149–159.Google Scholar
  135. Henry B. Mann and John E. Olsen, Sums of sets in the elementary abelian group of type (p, p), J. Combin. Theory 2 (1967) 275–284.MATHCrossRefGoogle Scholar
  136. John E. Olsen, An addition theorem, modulo p, J. Combin. Theory 5 (1968) 45–52. John E. Olsen, An addition theorem for the elementary abelian group, J. Combin. Theory 5 (1968) 53–58.CrossRefGoogle Scholar
  137. C. Ryavec, The addition of residue classes modulo n, Pacific J. Math. 26 (1968) 367–373. E. Szemerédi, On a conjecture of Erdös and Heilbronn, Acta Arith. 17 (1970–71) 227–229.Google Scholar
  138. H. L. Abbott, On a conjecture of Erdös and Straus on non-averaging sets of integers, Congressus Numerantium XV, Proc. 5th Brit. Combin. Conf. Aberdeen, 1975, 1–4. Google Scholar
  139. H. L. Abbott, Extremal problems on non-averaging and non-dividing sets, Pacific J. Math. 91 (1980) 1–12.MathSciNetMATHCrossRefGoogle Scholar
  140. P. Erdös and E. G. Straus, Non-averaging sets II, in Combinatorial Theory and its Applications II, Colloq. Math. Soc. Janos Bolyai 4. North-Holland, 1970, 405–411.Google Scholar
  141. E. G. Straus, Non-averaging Sets, Proc. Symp. Pure Math. 19 Amer. Math. Soc., Providence 1971, 215–222.Google Scholar
  142. P. Erdös, Some remarks on number theory (Hebrew, English summary) Riveon Lematematika9 (1955) 45–48; MR 17, 460. Google Scholar
  143. L. Moser, On the minimum overlap problem of Erdös Acta Arith. 5 (1959) 117–119; MR 21 #5594. Google Scholar
  144. T. S. Motzkin, K. E. Ralston, and J. L. Selfridge, Minimum overlappings under translation Bull. Amer. Math. Soc. 62 (1956) 558. Google Scholar
  145. S. Swierczkowski, On the intersection of a linear set with the translation of its complement Colloq. Math. 5 (1958) 185–197; MR 21 #1955. Google Scholar
  146. Claude Berge Theory of GraphsMethuen, 1962, p. 41. Google Scholar
  147. Paul Berman, Problem 122 Pi Mu Epsilon J. 3 (1959–64) 118, 412. Google Scholar
  148. A. Bruen and R. Dixon, The n-queens problem Discrete Math. 12 (1975) 393–395. Google Scholar
  149. B. Hansche and W. Vucenic, On the n-queens problem, Notices Amer. Math. Soc. 20 (1973) A-568.Google Scholar
  150. G. B. Huff, On pairings of the first 2n natural numbers, Acta Arith. 23 (1973) 117–126.MathSciNetMATHGoogle Scholar
  151. D. A. Klarner, The problem of the reflecting queens, Amer. Math. Monthly 74 (1967) 953–955; MR 40 #7123.Google Scholar
  152. Maurice Kraitchik, Mathematical Recreations, Norton, New York 1942, 247–256.Google Scholar
  153. J. D. Sebastian, Some computer solutions to the reflecting queens problem, Amer. Math. Monthly 76 (1969) 399–400; MR 39 #4018.Google Scholar
  154. J. L. Selfridge, Pairings of the first 2n integers so that sums and differences are all distinct, Notices Amer. Math. Soc. 10 (1963) 195.Google Scholar
  155. Mok-Kong Shen and Tsen-Pao Shen, Research Problem 39, Bull. Amer. Math. Soc. 68 (1962) 557.MathSciNetCrossRefGoogle Scholar
  156. M. Slater, Problem 1, Bull. Amer. Math. Soc. 69 (1963) 333.MathSciNetCrossRefGoogle Scholar
  157. J. L. Selfridge, Problem 123, Pi Mu Epsilon J. 3 (1959–64) 118, 413–414.Google Scholar
  158. Jan Bohman, Carl-Erik Fröberg, and Hans Riesel, Partitions in squares, BIT, 19 (1979) 297–301; MR 80k: 10043.Google Scholar
  159. E. M. Wright, The representation of a number as a sum of five or more squares, Quart. J. Math. (Oxford) 4 (1933) 37–51 and 228–232.Google Scholar
  160. E. M. Wright, The representation of a number as a sum of four `almost proportional’ squares, ibid. 7 (1936) 230–240.Google Scholar
  161. E. M. Wright, Representation of a number as a sum of three or four squares, Proc. London Math. Soc. (2) 42 (1937) 481–500.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Richard K. Guy
    • 1
  1. 1.Department of Mathematics and StatisticsThe University of CalgaryCalgaryCanada

Personalised recommendations