Unsolved Problems in Number Theory pp 58-78 | Cite as
Additive Number Theory
Chapter
Abstract
One of the most infamous problems is Goldbach’s conjecture that every even number greater than 4 is expressible as the sum of two odd primes. Vinogradov proved that every odd number greater than 3315 is the sum of three primes and Chen Jing-Run has shown that all large enough even numbers are the sum of a prime and the product of at most two primes.
Keywords
Number Theory Unsolved Problem Acta Arith Addition Chain Postage Stamp
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Reference
- Chen Jing-Run, On the representation of a large even number as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973) 157–176; MR 55#7959; II 21 (1978) 421–430; MR 80e: 10037.Google Scholar
- J. G. van der Corput, Sur l’hypothèse de Goldbach pour presque tous les nombres pairs, Acta Arith. 2 (1937) 266–290.Google Scholar
- N. G. Cudakov, On the density of the set of even numbers which are not representable as the sum of two odd primes, Izv. Akad. Nauk SSSR Ser. Mat. 2 (1938) 25–40.Google Scholar
- N. G. Cudakov, On Goldbach-Vinogradov’s theorem, Ann. of Math. (2) 48 (1947) 515–545; MR 9, 11.Google Scholar
- T. Estermann, On Goldbach’s problem: proof that almost all even positive integers are sums of two primes, Proc. London Math. Soc. (2) 44 (1938) 307–314.Google Scholar
- T. Estermann, Introduction to modern prime number theory, Cambridge Tracts in Mathematics 41, 1952.Google Scholar
- H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975) 353–370.MathSciNetMATHGoogle Scholar
- Pan Cheng Dong, Ding Xia Xi and Wang Yuan, On the representation of every large even integer as the sum of a prime and an almost prime, Sci. Sinica 18(1975) 599610; MR 57 #5897.Google Scholar
- P. M. Ross, On Chen’s theorem that each large even number has the form p i + p 2 or Pi + P2P3, J. London Math. Soc. (2) 10 (1975) 500–506.Google Scholar
- M. L. Stein and P. R. Stein, New experimental results on the Goldbach conjecture, Math. Mag. 38 (1965) 72–80; MR 32 #4109.Google Scholar
- Robert C. Vaughan, On Goldbach’s problem, Acta Arith. 22 (1972) 21–48.MathSciNetGoogle Scholar
- Robert C. Vaughan, A new estimate for the exceptional set in Goldbach’s problemGoogle Scholar
- Proc. Sympos. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St Louis, 1972) 315–319.Google Scholar
- I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937) 169–172.MATHGoogle Scholar
- I. M. Vinogradov, Some theorems concerning the theory of primes, Mat. Sb. N.S. 2 (44) (1937) 179–195.MATHGoogle Scholar
- Dan Zwillinger, A Goldbach conjecture using twin primes, Math. Comput. 33 (1979) 1071; MR 80b: 10071.Google Scholar
- L. Moser, Notes on number theory III.On the sum of consecutive primes, Canad. Math. Bull. 6 (1963) 159–161; MR 28 #75.Google Scholar
- W. E. Briggs, Prime-like sequences generated by a sieve process, Duke Math. J. 30 (1963) 297–312, MR 26 #6145.Google Scholar
- R. G. Buschman and M. C. Wunderlich, Sieve-generated sequences with translated intervals, Canad. J. Math. 19 (1967) 559–570; MR 35 #2855Google Scholar
- R. G. Buschman and M. C. Wunderlich, Sieves with generalized intervals, Boll. Un. Mat. Ital. (3) 21 (1966) 362–367.Google Scholar
- Paul Erdös and Eri Jabotinsky, On sequences of integers generated by a sieving process. I, II. Nederl Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20 (1958) 115–128; MR 21 #2628.Google Scholar
- Verna Gardiner, R. Lazarus, N. Metropolis, and S. Ulam, On certain sequences of integers defined by sieves, Math. Mag. 29 (1956) 117–122; MR 17, 711.Google Scholar
- David Hawkins and W. E. Briggs, The lucky number theorem, Math. Mag. 31(1957–58) 81–84, 277–280; MR 21 #2629, 2630.Google Scholar
- M. C. Wunderlich, Sieve generated sequences, Canad. J. Math. 18 (1966) 291–299; MR 32 #5625.Google Scholar
- M. C. Wunderlich, A general class of sieve-generated sequences, Acta Arith. 16 (196970) 41–56; MR 39 #6852.Google Scholar
- M. C. Wunderlich and W. E. Briggs, Second and third term approximations of sieve-generated sequences, Illinois J. Math. 10 (1966) 694–700; MR 34 #153.Google Scholar
- A. M. Mian and S. Chowla, on the B2-sequence of Sidon, Proc. Nat. Acad. Sci. India. Sect. A 14 (1949) 3–4; MR 7, 243.Google Scholar
- P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
- R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71. Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetCrossRefGoogle Scholar
- S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257.Google Scholar
- A. M. Mian and S. Chowla, on the B2-sequence of Sidon, Proc. Nat. Acad. Sci. India. Sect. A 14 (1949) 3–4; MR 7, 243.Google Scholar
- P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
- R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71.MathSciNetMATHCrossRefGoogle Scholar
- Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetMATHCrossRefGoogle Scholar
- S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257. 7, 243. P. Muller, M.Sc. thesis, Univ. of Buffalo, 1966.Google Scholar
- R. Queneau, Sur les suites s-additives, J. Combinatorial Theory 12 (1972) 31–71.MathSciNetMATHCrossRefGoogle Scholar
- Bernardo Recamân, Questions on a sequence of Ulam, Amer. Math. Monthly 80 (1973) 919–920.MathSciNetMATHCrossRefGoogle Scholar
- S. M. Ulam, Problems in Modern Mathematics, Interscience, N.Y. 1964, ix. M. C. Wunderlich, The improbable behaviour of Ulam’s summation sequence, in Computers and Number Theory, Academic Press, 1971, 249–257.Google Scholar
- John A. Ewell, On the determination of sets by sets of sums of fixed order, Canad. J. Math. 20 (1968) 596–611.MathSciNetCrossRefGoogle Scholar
- B. Gordon, A. S. Fraenkel, and E. G. Straus, On the determination of sets by the sets of sums of a certain order, Pacific J. Math. 12 (1962) 187–196; MR 27 0576.Google Scholar
- J. L. Selfridge and E. G. Straus, On the determination of numbers by their sums of a fixed order, Pacific J. Math. 8 (1958) 847–856; MR 22 #4657.Google Scholar
- Alfred Brauer, On addition chains, Bull. Amer. Math. Soc. 45 (1939) 736–739; MR 1, 40. Paul Erdös, Remarks on number theory III. On addition chains, Acta Arith. 6 (1960) 77–81.MathSciNetGoogle Scholar
- A. A. Gioia and M. V. Subbarao, The Scholz-Brauer problem in addition chains II, Congressus Numerantium XXII, Proc. 8th Manitoba Conf. Numerical Math. Comput. 1978, 251–274; MR 80i:10078; Zbl. 408. 10037.Google Scholar
- A. A. Gioia, M. V. Subbarao and M. Sugunamma, The Scholz-Brauer problem in addition chains, Duke Math. J. 29 (1962) 481–487; MR 25 #3898.Google Scholar
- W. Hansen, Zum Scholz-Brauerschen Problem, J. reine angew. Math. 202 (1959) 129–136; MR 25 #2027.Google Scholar
- A. M. II’in, On additive number chains (Russian), Problemy Kibernet. 13 (1965) 245–248. Donald Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1969, 398–422.Google Scholar
- Arnold Scholz, Aufgabe 253, Jber. Deutsch. Math.-Verein. II 47 (1937) 41–42 (supplement).Google Scholar
- K. B. Stolarsky, A lower bound for the Scholz-Brauer problem, Canad. J. Math. 21 (1969) 675–683; MR 40 #114.Google Scholar
- E. G. Straus, Addition chains of vectors, Amer. Math. Monthly 71 (1964) 806–808. Edward G. Thurber, The Scholz-Brauer problem on addition chains, Pacific J. Math. 49 (1973) 229–242; MR 49 #7233.Google Scholar
- Edward G. Thurber, Addition chains and solutions of l(2n) = 1(n) and 1(2“ — 1) = n + 1(n) — 1, Discrete Math. 16 (1976) 279–289; MR 55 #5570; Zbl. 346.10032.Google Scholar
- W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer. Math. Soc. 4 (1953) 462–463; MR 14, 949.Google Scholar
- C. T. Wyburn, A note on addition chains, Proc. Amer. Math. Soc. 16 (1965) 1134.Google Scholar
- P. T. Bateman, Remark on a recent note on linear forms, Amer. Math. Monthly 65 (1958) 517–518.MathSciNetMATHCrossRefGoogle Scholar
- E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways, Academic Press, London, 1981, Chap. 18.Google Scholar
- Alfred Brauer, On a problem of partitions, Amer. J. Math. 64 (1942) 299–312.MathSciNetMATHCrossRefGoogle Scholar
- A. Brauer and B. M. Seelbinder, On a problem of partitions, II, ibid. 76 (1954) 343–346. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. reine angew. Math. 211 (1962) 215–220.MathSciNetMATHGoogle Scholar
- J. S. Byrnes, On a partition problem of Frobenius, J. Combin. Theory Ser. A 17 (1974) 162–166; MR 50 #234.Google Scholar
- P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arith. 21 (1972) 399–408.MathSciNetMATHGoogle Scholar
- B. R. Heap and M. S. Lynn, A graph-theoretic algorithm for the solution of a linear diophantine problem of Frobenius, Numer. Math. 6 (1964) 346–354; MR 30 #4689.Google Scholar
- B. R. Heap and M. S. Lynn, On a linear diophantine problem of Frobenius: An improved algorithm, ibid 7 (1964) 226–231; MR 31 #1227. Google Scholar
- Mordechai Lewin, On a linear diophantine problem, Bull. London Math. Soc. 5 (1973) 75–78; MR 47 #3311.Google Scholar
- N. S. Mendelsohn, A linear diophantine equation with applications to non-negative matrices, Ann. N.Y. Acad. Sci. 175 (1970) 287–294.MathSciNetMATHGoogle Scholar
- A. Nijenhuis and H. S. Wilf, Representations of integers by linear forms in non-negative integers, J. Number Theory 4 (1972) 98–106.MathSciNetMATHCrossRefGoogle Scholar
- J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956) 465–469.MathSciNetMATHCrossRefGoogle Scholar
- O. J. Rödseth, On a linear Diophantine problem of Frobenius, J. reine angew. Math. 301 (1978) 171–178.MathSciNetMATHGoogle Scholar
- E. S. Selmer and O. Beyer, On the linear diophantine problem of Frobenius in three variables, J. reine angew. Math. 301 (1978) 161–170.MathSciNetMATHGoogle Scholar
- J. J. Sylvester, Math. Quest. Educ. Times 41 (1884) 21.Google Scholar
- Herbert S. Wilf, A circle of lights algorithm for the “money changing problem,” Amer. Math. Monthly 85 (1978) 562–565.MathSciNetMATHCrossRefGoogle Scholar
- V. S. Bludov and V. I. Uberman, A certain sequence of additively distinct numbers (Russian) Kibernetika (Kiev) 10 (1974) #5, 111–115; MR 53 #332; Zbl. 291. 10043.Google Scholar
- V. S. Bludov and V. L Uberman, On a sequence of additively differing numbers, Dopovidi Akad. Nauk. Ukrain. SSR Ser. A (1974) 483–486, 572; MR 50 #7007; Zbl. 281. 10030.Google Scholar
- J. H. Conway and R. K. Guy, Sets of natural numbers with distinct sums, Notices Amer. Math. Soc. 15 (1968) 345.Google Scholar
- J. H. Conway and R. K. Guy, Solution of a problem of P. Erdös, Colloq. Math. 20 (1969) 307.Google Scholar
- P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres, Bruxelles, 1955, Liège and Paris, 1956, 127–137, esp. p. 137.Google Scholar
- Hansraj Gupta, Some sequences with distinct sums, Indian J. Pure Math. 5 (1974) 1093–1109; MR 57 #12440.Google Scholar
- B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull. 8 (1965) 477–490.MATHCrossRefGoogle Scholar
- B. Lindström, Om ett problem av Erdös for talfoljder, Nordisk Mat. Tidskrift 16, 1–2 (1968) 29–30, 80.Google Scholar
- Paul Smith, Problem E 2536*, Amer. Math Monthly 82 (1975) 300. Solutions and comments, 83 (1976) 484.Google Scholar
- V. I. Uberman, The Conway-Guy conjecture and the density of almost geometric sequences (Russian).Google Scholar
- V. I. Uberman, On the theory of a method of determining numbers whose sums do not coincide (Russian), Proc. Sem. Methods Math. Simulation & Theory Elec. Circuits, Izdat Nauk Dumka (Kiev) 1973, 76–78, 203; MR 51 #7363.Google Scholar
- V. I. Uberman, Approximation of additively differing numbers (Russian) Proc. Sem. Methods Math. Simulation & Theory Elec. Circuits, Naukova Dumka, Kiev, 11 (1973) 221–229; MR 51 #7363; Zbl. 309. 68048.Google Scholar
- V. I. Uberman and V. I. Sleinikov, A computer-aided investigation of the density of additive detecting number systems (Russian), Akad. Nauk Ukrain. SSR, Fiz.-Tehn. Inst. Nizkikh Temperatur, Kharkov, 1978; 6O pp.Google Scholar
- M. Ajtai, J. Komlôs and E. Szemerédi, European Combin. J. (to appear). R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Heir. 37 (1962–63) 141–147.Google Scholar
- P. Erdös and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956) 67–73.MathSciNetMATHCrossRefGoogle Scholar
- P. Erdös and E. Szemerédi, The number of solutions of m = 4, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (1973) 83–90.CrossRefGoogle Scholar
- P. Erdös and P. Turdn, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941) 212–215; MR 3, 270. Addendum, 19 (1944) 208; MR 7,242.Google Scholar
- R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math. 1 (1980) 382–404.MathSciNetMATHCrossRefGoogle Scholar
- H. Halberstam and K. F. Roth, Sequences, Vol. I, Oxford Univ. Press, 1966, Chapter II. F. Krückeberg, Bz Folgen und verwandte Zahlenfolgen, J. reine angew. Math. 206 (1961) 53–60.Google Scholar
- B. Lindstrom, An inequality for B2-sequences, J. Combin. Theory 6 (1969) 211–212; MR 38 #4436.Google Scholar
- J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938) 377–385.MathSciNetCrossRefGoogle Scholar
- Alfred Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe I, II, J. reine angew. Math. 194 (1955) 40–65, 111–140; MR 17, 713.Google Scholar
- L. D. Baumert, Cyclic Difference Sets,Lecture notes in Math. 182 Springer-Verlag, New York, 1971.Google Scholar
- M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and N. J. A. Sloane, Bounds for binary codes of length less than 25, IEEE Trans. Information Theory IT-24 (1978) 81–93.Google Scholar
- P. Erdös and H. Hanani, On a limit theorem in combinatorical analysis, Publ. Math. Debrecen 10 (1963) 10–13.Google Scholar
- T. A. Evans and H. Mann, On simple difference sets, Sankhyd 11(1951) 357–364; MR 13, 899.Google Scholar
- R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes, IEEE Trans. Information Theory IT-26 (1980).Google Scholar
- R. L. Graham and N. J. A. Sloane, On constant weight codes and harmonious graphs, Utilitas Math. (to appear).Google Scholar
- J. I. Hall, A. J. E. M. Jensen, A. W. J. Kolen and J. H. van Lint, Equidistant codes with distance 12, Discrete Math. 17 (1977) 71–83.MathSciNetMATHCrossRefGoogle Scholar
- M. Hall, Cyclic projective planes, Duke Math. J. 14 (1947) 1079–1090; MR 9, 370.Google Scholar
- D. McCarthy, R. C. Mullin, P. J. Schellenberg, R. G. Stanton, and S. A. VanstoneGoogle Scholar
- On approximations to a projective plane of order 6, Ars Combinatoria 2 (1976) 111–168.MathSciNetGoogle Scholar
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.Google Scholar
- J. Schönheim, On maximal systems of k-tuples, Stud. Sci. Math. Hungar. 1 (1966) 363–368.MATHGoogle Scholar
- R. G. Stanton, J. G. Kalbfleisch, and R. C. Mullin, Covering and packing designs, in Proc. 2nd Conf. Combin. Math. and Appl., Chapel Hill, 1970, 428–450.Google Scholar
- S. C. Bose and S. Chowla, Report Inst. Theory of Numbers, Univ. of Colorado, Boulder, 1959.Google Scholar
- B. Lindström, A remark on B4-sequences, J. Combin. Theory 7 (1969) 276–277.MATHCrossRefGoogle Scholar
- R. Alter and J. A. Barnett, Remarks on the postage stamp problem with applications to computers, Congressus Numerantium XIX,Proc. 8th S.E. Conf. Combin., Graph Theory, Comput., Utilitas Math. 1977, 43–59; MR 57 #12246. Google Scholar
- R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math Monthly 87 (1980) 206–210.MathSciNetMATHCrossRefGoogle Scholar
- N. Hämmerer and G. Hofmeister, Zu einer Vermutung von Rohrbach, J. reine angew. Math. 286/287 (1976) 239–247; MR 54 #10181. Google Scholar
- E. Härtter, Basen für Gitterpunktmengen, J. reine angew. Math. 202 (1959) 153–170; MR 22A #31.Google Scholar
- R. L. Heimer and H. Langenbach, The stamp problem, J. Recreational Math. 7 (1974) 235–250.MathSciNetGoogle Scholar
- G. Hofmeister, Asymptotische Abschätzungen für dreielementige Extremalbasen in natürlichen Zahlen, J. reine angew. Math 232 (1968) 77–101; MR 38 #1068. Google Scholar
- G. Hofmeister, Endliche additive Zahlentheorie, Kapitel 1, Das Reichweitenproblem, Joh. Guttenberg-Univ. Mainz, 1976Google Scholar
- G. Hofmeister and H. Schell, Reichweiten von Mengen natürlicher Zahlen I, Norske Vid. Selsk. Skr. (Trondheim) 1970 #10, 5pp; MR 44 #1642.Google Scholar
- W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. reine angew. Math. 238 (1969) 161–168 (and see 194–220); MR 40 #117, 116.Google Scholar
- W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377–380; MR 40 #6745. L. Moser, On the representation of 1, 2,…, n by sums, Acta Arith. 6 (1960) 11–13; MR 23A #133.Google Scholar
- L.Moser, J. R. Pounder and J. Riddell, On the cardinality of h-bases for n, J. London Math. Soc. 44 (1969) 397–407; MR 39 #162.Google Scholar
- L. Moser and J. Riddell. On additive h-bases for n, Colloq. Math. 9 (1962) 287–290; MR 26 #1295.Google Scholar
- Arnulf Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg 48 (1979) 118–124; MR 80g:10058. Google Scholar
- M. B. Nathanson, Additive h-bases for lattice points, 2nd Internat. Conf. Combin. Math., Annals N.Y. Acad. Sci. 319 (1979) 413–414; MR 81e: 10041.Google Scholar
- J. Riddell, On bases for sets of integers, Master’s thesis, Univ. of Alberta, 1960.Google Scholar
- J. Riddell and C. Chan, Some extremal 2-bases, Math. Comput. 32 (1978) 630–634; MR 57 #16244; Zbl. 388. 10032.Google Scholar
- H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937)1–30; Zbl. 15, 200.Google Scholar
- H. Rohrbach, Anwendung eines Satzes der additiven Zahlentheorie auf eine graphentheoretische Frage, Math. Z. 42 (1937) 538–542.MathSciNetCrossRefGoogle Scholar
- R. G. Stanton, J. A. Bate and R. C. Mullin, Some tables for the postage stamp problem, Congressus Numerantium XII,Proc. 4th Manitoba Conf. Numer. Math. Winnipeg 1974, 351–356; MR 51 #7887.Google Scholar
- S. L. G. Choi, On sequences not containing a large sum-free subsequence, Proc. Amer. Math. Soc. 41 (1973) 415–418; MR 48 #3910.Google Scholar
- S. L. G. Choi, On a combinatorial problem in number theory, Proc. London Math. Soc. (3) 23 (1971) 629–642; MR 45 #1867.Google Scholar
- P. H. Diananda and H.-P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad. 45 (1969) 1–5; MR 39 #6968.Google Scholar
- Leo Moser, Advanced problem 4317, Amer. Math Monthly 55 (1948) 586; solution Robert Steinberg 57 (1950) 345.Google Scholar
- Anne Penfold Street, A maximal sum-free set in A5, Utilitas Math. 5 (1974) 85–91; MR49#7156.Google Scholar
- Anne Penfold Street, Maximal sum-free sets in abelian groups of order divisible by three, Bull. Austral. Math. Soc. 6 (1972) 439–441; MR 46 #5484. Corrigenda 7 (1972) 317–318; MR 47 #5147.Google Scholar
- P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959) 358–560; MR 21 #5595.Google Scholar
- H. P. Yap, Maximal sum-free sets in finite abelian groups, Bull. Austral. Math. Soc. 4 (1971) 217–223; MR 43 #2081 [and see ibid 5 (1971) 43–54; MR 45 #3574; Nanta Math. 2 (1968) 68–71; MR 38 #3345; Canad. J. Math. 22 (1970) 1185–1195; MR 42 #1897; J. Number Theory 5 (1973) 293–300; MR 48 #11356].Google Scholar
- P. Erdös, Some problems in number theory, in Computers in Number Theory, Academic Press, London and New York, 1971, 405–413.Google Scholar
- P. Erdös and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1969)149–159.Google Scholar
- Henry B. Mann and John E. Olsen, Sums of sets in the elementary abelian group of type (p, p), J. Combin. Theory 2 (1967) 275–284.MATHCrossRefGoogle Scholar
- John E. Olsen, An addition theorem, modulo p, J. Combin. Theory 5 (1968) 45–52. John E. Olsen, An addition theorem for the elementary abelian group, J. Combin. Theory 5 (1968) 53–58.CrossRefGoogle Scholar
- C. Ryavec, The addition of residue classes modulo n, Pacific J. Math. 26 (1968) 367–373. E. Szemerédi, On a conjecture of Erdös and Heilbronn, Acta Arith. 17 (1970–71) 227–229.Google Scholar
- H. L. Abbott, On a conjecture of Erdös and Straus on non-averaging sets of integers, Congressus Numerantium XV, Proc. 5th Brit. Combin. Conf. Aberdeen, 1975, 1–4. Google Scholar
- H. L. Abbott, Extremal problems on non-averaging and non-dividing sets, Pacific J. Math. 91 (1980) 1–12.MathSciNetMATHCrossRefGoogle Scholar
- P. Erdös and E. G. Straus, Non-averaging sets II, in Combinatorial Theory and its Applications II, Colloq. Math. Soc. Janos Bolyai 4. North-Holland, 1970, 405–411.Google Scholar
- E. G. Straus, Non-averaging Sets, Proc. Symp. Pure Math. 19 Amer. Math. Soc., Providence 1971, 215–222.Google Scholar
- P. Erdös, Some remarks on number theory (Hebrew, English summary) Riveon Lematematika9 (1955) 45–48; MR 17, 460. Google Scholar
- L. Moser, On the minimum overlap problem of Erdös Acta Arith. 5 (1959) 117–119; MR 21 #5594. Google Scholar
- T. S. Motzkin, K. E. Ralston, and J. L. Selfridge, Minimum overlappings under translation Bull. Amer. Math. Soc. 62 (1956) 558. Google Scholar
- S. Swierczkowski, On the intersection of a linear set with the translation of its complement Colloq. Math. 5 (1958) 185–197; MR 21 #1955. Google Scholar
- Claude Berge Theory of GraphsMethuen, 1962, p. 41. Google Scholar
- Paul Berman, Problem 122 Pi Mu Epsilon J. 3 (1959–64) 118, 412. Google Scholar
- A. Bruen and R. Dixon, The n-queens problem Discrete Math. 12 (1975) 393–395. Google Scholar
- B. Hansche and W. Vucenic, On the n-queens problem, Notices Amer. Math. Soc. 20 (1973) A-568.Google Scholar
- G. B. Huff, On pairings of the first 2n natural numbers, Acta Arith. 23 (1973) 117–126.MathSciNetMATHGoogle Scholar
- D. A. Klarner, The problem of the reflecting queens, Amer. Math. Monthly 74 (1967) 953–955; MR 40 #7123.Google Scholar
- Maurice Kraitchik, Mathematical Recreations, Norton, New York 1942, 247–256.Google Scholar
- J. D. Sebastian, Some computer solutions to the reflecting queens problem, Amer. Math. Monthly 76 (1969) 399–400; MR 39 #4018.Google Scholar
- J. L. Selfridge, Pairings of the first 2n integers so that sums and differences are all distinct, Notices Amer. Math. Soc. 10 (1963) 195.Google Scholar
- Mok-Kong Shen and Tsen-Pao Shen, Research Problem 39, Bull. Amer. Math. Soc. 68 (1962) 557.MathSciNetCrossRefGoogle Scholar
- M. Slater, Problem 1, Bull. Amer. Math. Soc. 69 (1963) 333.MathSciNetCrossRefGoogle Scholar
- J. L. Selfridge, Problem 123, Pi Mu Epsilon J. 3 (1959–64) 118, 413–414.Google Scholar
- Jan Bohman, Carl-Erik Fröberg, and Hans Riesel, Partitions in squares, BIT, 19 (1979) 297–301; MR 80k: 10043.Google Scholar
- E. M. Wright, The representation of a number as a sum of five or more squares, Quart. J. Math. (Oxford) 4 (1933) 37–51 and 228–232.Google Scholar
- E. M. Wright, The representation of a number as a sum of four `almost proportional’ squares, ibid. 7 (1936) 230–240.Google Scholar
- E. M. Wright, Representation of a number as a sum of three or four squares, Proc. London Math. Soc. (2) 42 (1937) 481–500.Google Scholar
Copyright information
© Springer Science+Business Media New York 1981