Classical Trajectory Studies of the Formation and Unimolecular Decay of Rare Gas Clusters

  • John W. Brady
  • Jimmie D. Doll
  • Donald L. Thompson


Within a classical macroscopic picture the stability of a super-saturated vapor is a consequence of the surface related activation barrier associated with the growth of small clusters. As indicated in Fig. 1 the free energy change for the formation of small clusters from a vapor is positive and increases with cluster size until a “critical” cluster size is attained. Beyond the critical cluster size subsequent cluster growth results in a decrease in the free energy and the process occurs spontaneously. Because the growth up to the critical cluster size is responsible for the stability of the supersaturated vapor, it is important that it be well understood.


Cluster Size Decay Curve Capture Cross Section Copyright Holder Fixed Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of \(A+A_{n}\leftrightharpoons A_{n+1}^{*}\), J. Chem. Phys. 71: 2467 (1979).CrossRefGoogle Scholar
  2. 2.
    J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: Further classical trajectory studies of \(A+A_{n}\leftrightharpoons A_{n+1}^{*}\), J. Chem. Phys. 73: 2767 (1980).CrossRefGoogle Scholar
  3. 3.
    J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of \(A_{n}^{*}\rightarrow A_{n-1}+A\), J. Chem. Phys. 74: 1026 (1981).CrossRefGoogle Scholar
  4. 4.
    J. J. Burton, Nucleation theory, in: “Statistical Mechanics, Part A”, B. J. Berne, ed., Plenum, New York (1977), p. 195.CrossRefGoogle Scholar
  5. 5.
    F. F. Abraham, “Homogeneous Nucleation Theory”, Academic, New York (1975).Google Scholar
  6. 6.
    B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Films”, Academic, New York (1978).Google Scholar
  7. 7.
    A. C. Zettlemoyer, ed., “Nucleation”, Marcel Dekker, New York (5).Google Scholar
  8. 8.
    J. P. Hirth and G. M. Pound, Condensation and evaporation; nucleation and growth kinetics, Progr. Mater. Sci. 11: 1 (1963).CrossRefGoogle Scholar
  9. 9.
    J. L. Katz, Condensation of a supersaturated vapor. I. The homogeneous nucleation of the n-alkanes, J. Chem. Phys. 52: 4733 (1970).CrossRefGoogle Scholar
  10. 10.
    D. B. Dawson, E. J. Wilson, P. G. Hill, and K. C. Russel, Nucleation of supersaturated vapors in nozzles. II. C6H6, CHCl3, CCl3F, and C2H5OH, J. Chem. Phys. 51: 5389 (1969).CrossRefGoogle Scholar
  11. 11.
    F. F. Abraham, Predicting the critical supersaturation for homogeneous nucleation of vapor condensation, J. Appl. Phys. 39: 3287 (1968).CrossRefGoogle Scholar
  12. 12.
    P. L. M. Plummer and B. N. Hale, Molecular model for prenucleation water clusters, J. Chem. Phys. 56: 4329 (1972).CrossRefGoogle Scholar
  13. 13.
    B. N. Hale and P. L. M. Plummer, Molecular model for ice clusters in a supersaturated vapor, J. Chem. Phys. 61: 4012 (1974).CrossRefGoogle Scholar
  14. 14.
    J. J. Burton, On the validity of homogeneous nucleation theory, Acta Met. 21: 1225 (1973).CrossRefGoogle Scholar
  15. 15.
    J. J. Burton, Free energy of small face centered cubic clusters of argon, J. Chem. Soc. Faraday Trans. II 69: 540 (1973).CrossRefGoogle Scholar
  16. 16.
    G. L. Griffin and R. P. Andres, Microscopic capillarity approximation: Free energies of small clusters, J. Chem. Phys. 71: 2522 (1979).CrossRefGoogle Scholar
  17. 17.
    K. Binder and D. Stauffer, Monte Carlo study of the surface area of liquid droplets, J. Stat. Phys. 6: 49 (1972).CrossRefGoogle Scholar
  18. 18.
    J. K. Lee, J. A. Barker, and F. F. Abraham, Theory and Monte Carlo simulation of physical clusters in the imperfect vapor, J. Chem. Phys. 58: 3166 (1973).CrossRefGoogle Scholar
  19. 19.
    H. W. Harrison, W. C. Schieve, and J. S. Turner, Molecular dynamics of two-dimensional gases and the formation of bound states, J. Chem. Phys. 56: 710 (1972).CrossRefGoogle Scholar
  20. 20.
    W. C. Schieve and H. W. Harrison, Molecular dynamics study of dimer formation in three dimensions, J. Chem. Phys. 61: 700 (1974).CrossRefGoogle Scholar
  21. 21.
    M. Synek, W. C. Schieve, and H. W. Harrison, Molecular dynamics study of polymer formation, J. Chem. Phys. 67: 2916 (1977).CrossRefGoogle Scholar
  22. 22.
    W. H. Zurek and W. C. Schieve, Molecular dynamics evidence for vapor-liquid nucleation, Phys. Lett. 67A: 42 (1978).Google Scholar
  23. 23.
    M. J. Mandell, J. P. McTague, and A. Rahman, Crystal nucleation in a three-dimensional Lennard-Jones system: A molecular dynamics study, J. Chem. Phys. 64: 3699 (1976).CrossRefGoogle Scholar
  24. 24.
    C. S. Hsu and A. Rahman, Crystal nucleation and growth in liquid rubidium, J. Chem. Phys. 70: 5234 (1979).CrossRefGoogle Scholar
  25. 25.
    D. J. McGinty, Molecular dynamics studies of the properties of small clusters of argon atoms, J. Chem. Phys. 58: 4733 (1973).CrossRefGoogle Scholar
  26. 26.
    C. L. Briant and J. J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, J. Chem. Phys. 63: 2045 (1975).CrossRefGoogle Scholar
  27. 27.
    R. D. Etters, R. Danilowicz, and J. Kaelberer, Metastable states of small rare gas crystallites, J. Chem. Phys. 67: 4145 (1977).CrossRefGoogle Scholar
  28. 28.
    M. Rao, B. J. Berne, and M. H. Kalos, Computer simluation of the nucleation and thermodynamics of microclusters, J. Chem. Phys. 68: 1325 (1978).CrossRefGoogle Scholar
  29. 29.
    E. R. Buckle, A kinetic theory of cluster formation in the condensation of gases, Trans. Faraday Soc. 65: 1267 (1969).CrossRefGoogle Scholar
  30. 30.
    F. F. Abraham, Multistate kinetics in non-steady state nucleation: A numerical solution, J. Chem. Phys. 51: 1632 (1969).CrossRefGoogle Scholar
  31. 31.
    S. H. Bauer and D. J. Frurip, Homogeneous nucleation in metal vapors. 5. A self-consistent kinetic model, J. Phys. Chem. 81: 1015 (1977).CrossRefGoogle Scholar
  32. 32.
    R. E. Howard, R. E. Roberts, and M. J. DelleDonne, Three-body effects in the exchange and dissociation encounters for Ar + Ar2, J. Chem. Phys. 65: 3067 (1976).CrossRefGoogle Scholar
  33. 33.
    M. R. Hoare and P. Pal, Physical cluster mechanics: Statics and energy surfaces for monatomic systems, Advan. Phys. 20: 161 (1971).CrossRefGoogle Scholar
  34. M. R. Hoare and P. Pal, Statics and stability of small cluster nuclei, Nature 230: 5 (1971).Google Scholar
  35. M. R. Hoare and P. Pal, Statics and stability of small assemblies of atoms, J. Cryst. Growth 17: 77 (1972).CrossRefGoogle Scholar
  36. 34.
    R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976).Google Scholar
  37. 35.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids”, Wiley, New York (1954).Google Scholar
  38. 36.
    H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950).Google Scholar
  39. 37.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21: 1087 (1953).CrossRefGoogle Scholar
  40. 38.
    W. W. Wood and F. R. Parker, Monte Carlo equation of state of molecules interacting with the Lennard-Jones potential. I. A supercritical isotherm at about twice the critical temperature, J. Chem. Phys. 27: 720 (1957).CrossRefGoogle Scholar
  41. 39.
    J. A. Barker, “Lattice Theories of the Liquid State”, MacMillan, New York (1963).Google Scholar
  42. 40.
    J. P. Valleau and S. G. Whittington, A guide to Monte Carlo for statistical mechanics: 1. Highways, in: “Statistical Mechanics, Part A”, B. J. Berne, ed., Plenum, New York (1977), p. 137.Google Scholar
  43. 41.
    W. W. Wood, Computer studies on fluid systems of hard-core particles, in: “Fundamental Problems in Statistical Mechanics III”, E. G. D. Cohen, ed., North Holland, Amsterdam (1975), p. 331.Google Scholar
  44. 42.
    W. H. Miller and T. F. George, Analytic continuation of classical mechanics for classically forbidden collision processes, J. Chem. Phys. 56: 5668 (1972).CrossRefGoogle Scholar
  45. 43.
    E. Isaacson and H. B. Keller, “Analysis of Numerical Methods”, Wiley, New York (1966).Google Scholar
  46. 44.
    F. H. Stillinger, Jr., Rigorous basis of the Frenkel-Band theory of association equilibrium, J. Chem. Phys. 38: 1486 (1963).CrossRefGoogle Scholar
  47. 45.
    K. Binder, Monte Carlo simulation of physical clusters of water molecules, J. Chem. Phys, 63: 2265 (1975).CrossRefGoogle Scholar
  48. 46.
    F. F. Abraham, Monte Carlo simulation of physical clusters of water molecules, J. Chem. Phys. 61: 1221 (1974).CrossRefGoogle Scholar
  49. 47.
    F. F. Abraham and J. A, Barker, Reply to K. Binder’s comments on Monte Carlo simulation of physical clusters, J. Chem. Phys. 63: 2266 (1975).CrossRefGoogle Scholar
  50. 48.
    See, for example, P. J. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley, New York (1972).Google Scholar
  51. 49.
    See, for example, C. A. Parr, A. Kuppermann, and R. N. Porter, Classical dynamics of triatomic systems: Energized harmonic molecules, J. Chem. Phys. 66: 2914 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • John W. Brady
    • 1
  • Jimmie D. Doll
    • 1
  • Donald L. Thompson
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations